Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2020, Volume 60, Number 12, Pages 2055–2072
DOI: https://doi.org/10.31857/S0044466920120169
(Mi zvmmf11171)
 

Ordinary differential equations

Computation of periodic solutions to pendulum type systems with a small parameter

V. P. Varin

Federal Research Center Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Moscow, 125047 Russia
References:
Abstract: Periodic solutions of pendulum-type ODE systems are considered. Finding such solutions is a classical problem in mechanics. Numerous methods are available for computing periodic solutions, and these methods have existed as long as the problems themselves. However, they were designed for manual calculation, and attempts to program them in computer algebra systems (CAS) are sometimes ineffective. For computing such solutions, we propose a method intended for CAS. The method is based on the use of high-order variational equations and symbolic differentiation. It is shown on a number of examples that all computations are reduced to operations with polynomials.
Key words: periodic solutions, variational equations, formal differentiation, computer algebra methods.
Received: 04.06.2020
Revised: 06.07.2020
Accepted: 04.08.2020
English version:
Computational Mathematics and Mathematical Physics, 2020, Volume 60, Issue 12, Pages 1990–2006
DOI: https://doi.org/10.1134/S0965542520120167
Bibliographic databases:
Document Type: Article
UDC: 519.624
Language: Russian
Citation: V. P. Varin, “Computation of periodic solutions to pendulum type systems with a small parameter”, Zh. Vychisl. Mat. Mat. Fiz., 60:12 (2020), 2055–2072; Comput. Math. Math. Phys., 60:12 (2020), 1990–2006
Citation in format AMSBIB
\Bibitem{Var20}
\by V.~P.~Varin
\paper Computation of periodic solutions to pendulum type systems with a small parameter
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2020
\vol 60
\issue 12
\pages 2055--2072
\mathnet{http://mi.mathnet.ru/zvmmf11171}
\crossref{https://doi.org/10.31857/S0044466920120169}
\elib{https://elibrary.ru/item.asp?id=44154325}
\transl
\jour Comput. Math. Math. Phys.
\yr 2020
\vol 60
\issue 12
\pages 1990--2006
\crossref{https://doi.org/10.1134/S0965542520120167}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=WOS:000604980400004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85098568133}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11171
  • https://www.mathnet.ru/eng/zvmmf/v60/i12/p2055
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:124
    References:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024