Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2020, Volume 60, Number 11, Pages 1950–1961
DOI: https://doi.org/10.31857/S004446692011006X
(Mi zvmmf11163)
 

This article is cited in 17 scientific papers (total in 17 papers)

Mathematical physics

Mathematical modeling of the Wuhan COVID-2019 epidemic and inverse problems

S. I. Kabanikhinab, O. I. Krivorot'koab

a Institute of Computational Mathematics and Mathematical Geophysics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090 Russia
b Novosibirsk State University, Novosibirsk, 630090 Russia
Citations (17)
References:
Abstract: Mathematical models for transmission dynamics of the novel COVID-2019 coronavirus, an outbreak of which began in December, 2019, in Wuhan are considered. To control the epidemiological situation, it is necessary to develop corresponding mathematical models. Mathematical models of COVID-2019 spread described by systems of nonlinear ordinary differential equations (ODEs) are overviewed. Some of the coefficients and initial data for the ODE systems are unknown or their averaged values are specified. The problem of identifying model parameters is reduced to the minimization of a quadratic objective functional. Since the ODEs are nonlinear, the solution of the inverse epidemiology problems can be nonunique, so approaches for analyzing the identifiability of inverse problems are described. These approaches make it possible to establish which of the unknown parameters (or their combinations) can be uniquely and stably recovered from available additional information. For the minimization problem, methods are presented based on a combination of global techniques (covering methods, nature-like algorithms, multilevel gradient methods) and local techniques (gradient methods and the Nelder–Mead method).
Key words: mathematical models, COVID-2019, coronavirus, epidemiology, inverse problems, optimization, regularization, identifiability, ODE, tensor decomposition, nature-like algorithms, gradient methods.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 075-15-2019-1675
This work was supported by the Mathematical Center in Akademgorodok and the Ministry of Science and Higher Education of the Russian Federation, contract no. 075-15-2019-1675.
Received: 02.03.2020
Revised: 02.03.2020
Accepted: 07.07.2020
English version:
Computational Mathematics and Mathematical Physics, 2020, Volume 60, Issue 11, Pages 1889–1899
DOI: https://doi.org/10.1134/S0965542520110068
Bibliographic databases:
Document Type: Article
UDC: 517.958
Language: Russian
Citation: S. I. Kabanikhin, O. I. Krivorot'ko, “Mathematical modeling of the Wuhan COVID-2019 epidemic and inverse problems”, Zh. Vychisl. Mat. Mat. Fiz., 60:11 (2020), 1950–1961; Comput. Math. Math. Phys., 60:11 (2020), 1889–1899
Citation in format AMSBIB
\Bibitem{KabKri20}
\by S.~I.~Kabanikhin, O.~I.~Krivorot'ko
\paper Mathematical modeling of the Wuhan COVID-2019 epidemic and inverse problems
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2020
\vol 60
\issue 11
\pages 1950--1961
\mathnet{http://mi.mathnet.ru/zvmmf11163}
\crossref{https://doi.org/10.31857/S004446692011006X}
\elib{https://elibrary.ru/item.asp?id=44038910}
\transl
\jour Comput. Math. Math. Phys.
\yr 2020
\vol 60
\issue 11
\pages 1889--1899
\crossref{https://doi.org/10.1134/S0965542520110068}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=WOS:000596808500011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85097307454}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11163
  • https://www.mathnet.ru/eng/zvmmf/v60/i11/p1950
  • This publication is cited in the following 17 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:200
    References:31
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024