Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2020, Volume 60, Number 10, Pages 1764–1776
DOI: https://doi.org/10.31857/S0044466920100063
(Mi zvmmf11149)
 

This article is cited in 9 scientific papers (total in 9 papers)

Mathematical physics

Sensitivity of the Euler–Poinsot tensor values to the choice of the body surface triangulation mesh

A. A. Burovab, V. I. Nikonovab

a Dorodnitsyn Computing Center, Russian Academy of Sciences, Moscow, 119991 Russia
b National Research University Higher Scholl of Economics, Moscow, 101000 Russia
Citations (9)
References:
Abstract: The inertial characteristics of celestial bodies can be calculated using their triangle partitions based on photometric observations. Such partitions can be refined along with the accumulation of necessary information. In this regard, the question arises to what extent the approximations of the inertial characteristics of celestial bodies, in particular, the approximations of the components of the Euler–Poinsot tensor of different orders, are susceptible to the choice of such partitions. Such components enter into the expansion of the gravitational potential in harmonic polynomials. In this paper, for some small celestial bodies, a comparison of such coefficients is carried out as coarse partitions are replaced with finer ones.
Key words: approximation of gravitational potential, Euler–Poinsot tensor.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation МК-1712.2019.1
Russian Foundation for Basic Research 18-01-00335
The research by V.I. Nikonov was supported by a Russian Federation Presidential grant (no. MK-1712.2019.1) for the state support of scientific research of young Russian scientists: candidates and doctors of sciences, and was supported in part by the Russian Foundation for Basic Research (project no. 18-01-00335).
Received: 03.02.2020
Revised: 03.02.2020
Accepted: 07.06.2020
English version:
Computational Mathematics and Mathematical Physics, 2020, Volume 60, Issue 10, Pages 1708–1720
DOI: https://doi.org/10.1134/S0965542520100061
Bibliographic databases:
Document Type: Article
UDC: 517.93
Language: Russian
Citation: A. A. Burov, V. I. Nikonov, “Sensitivity of the Euler–Poinsot tensor values to the choice of the body surface triangulation mesh”, Zh. Vychisl. Mat. Mat. Fiz., 60:10 (2020), 1764–1776; Comput. Math. Math. Phys., 60:10 (2020), 1708–1720
Citation in format AMSBIB
\Bibitem{BurNik20}
\by A.~A.~Burov, V.~I.~Nikonov
\paper Sensitivity of the Euler--Poinsot tensor values to the choice of the body surface triangulation mesh
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2020
\vol 60
\issue 10
\pages 1764--1776
\mathnet{http://mi.mathnet.ru/zvmmf11149}
\crossref{https://doi.org/10.31857/S0044466920100063}
\elib{https://elibrary.ru/item.asp?id=44008027}
\transl
\jour Comput. Math. Math. Phys.
\yr 2020
\vol 60
\issue 10
\pages 1708--1720
\crossref{https://doi.org/10.1134/S0965542520100061}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=WOS:000594502400011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85096367200}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11149
  • https://www.mathnet.ru/eng/zvmmf/v60/i10/p1764
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:98
    References:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024