Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2020, Volume 60, Number 8, Pages 1291–1303
DOI: https://doi.org/10.31857/S0044466920080049
(Mi zvmmf11111)
 

Functional differential equations of pointwise type: bifurcation

L. A. Beklaryana, A. L. Beklaryanb

a Central Economics and Mathematics Institute, Russian Academy of Sciences, Moscow, 117418 Russia
b National Research University Higher School of Economics, Moscow, 119049 Russia
References:
Abstract: The importance of functional differential equations of pointwise type is determined by the fact that their solutions are used to construct traveling-wave solutions for induced infinite-dimensional ordinary differential equations, and vice versa. Solutions of such equations exhibit bifurcation. A theorem on branching bifurcation is obtained for the solution to a linear homogeneous functional differential equation of pointwise type.
Key words: functional differential equation, initial-boundary value problem, bifurcation.
Funding agency Grant number
Russian Foundation for Basic Research 19-01-00147
This work was supported by the Russian Foundation for Basic Research, project no. 19-01-00147.
Received: 15.02.2020
Revised: 15.02.2020
Accepted: 09.04.2020
English version:
Computational Mathematics and Mathematical Physics, 2020, Volume 60, Issue 8, Pages 1249–1260
DOI: https://doi.org/10.1134/S0965542520080047
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: L. A. Beklaryan, A. L. Beklaryan, “Functional differential equations of pointwise type: bifurcation”, Zh. Vychisl. Mat. Mat. Fiz., 60:8 (2020), 1291–1303; Comput. Math. Math. Phys., 60:8 (2020), 1249–1260
Citation in format AMSBIB
\Bibitem{BekBek20}
\by L.~A.~Beklaryan, A.~L.~Beklaryan
\paper Functional differential equations of pointwise type: bifurcation
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2020
\vol 60
\issue 8
\pages 1291--1303
\mathnet{http://mi.mathnet.ru/zvmmf11111}
\crossref{https://doi.org/10.31857/S0044466920080049}
\elib{https://elibrary.ru/item.asp?id=43824044}
\transl
\jour Comput. Math. Math. Phys.
\yr 2020
\vol 60
\issue 8
\pages 1249--1260
\crossref{https://doi.org/10.1134/S0965542520080047}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=WOS:000575902400001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85092194619}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11111
  • https://www.mathnet.ru/eng/zvmmf/v60/i8/p1291
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:92
    References:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024