Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2020, Volume 60, Number 7, Pages 1268–1280
DOI: https://doi.org/10.31857/S0044466920070091
(Mi zvmmf11109)
 

This article is cited in 2 scientific papers (total in 2 papers)

Inviscid instability of an incompressible boundary layer on a compliant surface

I. V. Savenkov

Dorodnicyn Computing Center, Federal Research Center "Computer Science and Control", Russian Academy of Sciences, Moscow, 119991 Russia
Citations (2)
References:
Abstract: The instability of an incompressible boundary layer on a compliant plate with respect to inviscid perturbations is analyzed on the basis of triple-deck theory. It is shown that unstable inviscid perturbations persist only if the inertia of the plate is taken into account. It is found that an important role is played by the bending stiffness of the plate. Specifically, as it approaches a certain value, the instability can become arbitrarily high, but, with a further increase in the bending stiffness, it vanishes completely as soon as the bending stiffness reaches a threshold value.
Key words: incompressible boundary layer, instability, Tollmien–Schlichting waves, compliant surface, inertia, bending stiffness, tensile stress, asymptotic expansions, triple-deck theory.
Received: 19.05.2019
Revised: 15.12.2019
Accepted: 10.03.2020
English version:
Computational Mathematics and Mathematical Physics, 2020, Volume 60, Issue 7, Pages 1228–1239
DOI: https://doi.org/10.1134/S096554252007009X
Bibliographic databases:
Document Type: Article
UDC: 519.63
Language: Russian
Citation: I. V. Savenkov, “Inviscid instability of an incompressible boundary layer on a compliant surface”, Zh. Vychisl. Mat. Mat. Fiz., 60:7 (2020), 1268–1280; Comput. Math. Math. Phys., 60:7 (2020), 1228–1239
Citation in format AMSBIB
\Bibitem{Sav20}
\by I.~V.~Savenkov
\paper Inviscid instability of an incompressible boundary layer on a compliant surface
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2020
\vol 60
\issue 7
\pages 1268--1280
\mathnet{http://mi.mathnet.ru/zvmmf11109}
\crossref{https://doi.org/10.31857/S0044466920070091}
\elib{https://elibrary.ru/item.asp?id=42929548}
\transl
\jour Comput. Math. Math. Phys.
\yr 2020
\vol 60
\issue 7
\pages 1228--1239
\crossref{https://doi.org/10.1134/S096554252007009X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=WOS:000557407900012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85089145233}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11109
  • https://www.mathnet.ru/eng/zvmmf/v60/i7/p1268
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:78
    References:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024