Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2020, Volume 60, Number 7, Pages 1193–1200
DOI: https://doi.org/10.31857/S0044466920070029
(Mi zvmmf11104)
 

This article is cited in 2 scientific papers (total in 2 papers)

Asymptotic expansion of Legendre polynomials with respect to the index near $x=1$: generalization of the Mehler–Rayleigh formula

Л. А. Bakaleynikov, E. A. Tropp

Ioffe Physical Technical Institute, Russian Academy of Sciences, St. Petersburg, 194021 Russia
Citations (2)
References:
Abstract: An asymptotic expansion of the Legendre polynomials ${{P}_{n}}\left(x\right)$ in inverse powers of the index $n$ in a neighborhood of $x=1$ is obtained. It is shown that the expansion coefficient of ${n}^{{-k}}$ is a linear combination of terms of the form ${{\rho }^{p}}{{J}_{p}}\left(\rho\right)$, where $0\leqslant p\leqslant k$. It is also shown that the first terms of the expansion coincide with a well-known expansion of Legendre polynomials outside neighborhoods of the endpoints of the interval $-1\leqslant x\leqslant 1$ in the intermediate limit. Based on this result, a uniform expansion of Legendre polynomials with respect to the index can be obtained in the entire interval $\left[{-1,1}\right]$.
Key words: Legendre polynomials, uniform asymptotic expansion, Mehler–Rayleigh formula.
Received: 18.10.2019
Revised: 18.10.2019
Accepted: 10.03.2020
English version:
Computational Mathematics and Mathematical Physics, 2020, Volume 60, Issue 7, Pages 1155–1162
DOI: https://doi.org/10.1134/S0965542520070027
Bibliographic databases:
Document Type: Article
UDC: 517.586
Language: Russian
Citation: Л. А. Bakaleynikov, E. A. Tropp, “Asymptotic expansion of Legendre polynomials with respect to the index near $x=1$: generalization of the Mehler–Rayleigh formula”, Zh. Vychisl. Mat. Mat. Fiz., 60:7 (2020), 1193–1200; Comput. Math. Math. Phys., 60:7 (2020), 1155–1162
Citation in format AMSBIB
\Bibitem{BakTro20}
\by Л.~А.~Bakaleynikov, E.~A.~Tropp
\paper Asymptotic expansion of Legendre polynomials with respect to the index near $x=1$: generalization of the Mehler--Rayleigh formula
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2020
\vol 60
\issue 7
\pages 1193--1200
\mathnet{http://mi.mathnet.ru/zvmmf11104}
\crossref{https://doi.org/10.31857/S0044466920070029}
\elib{https://elibrary.ru/item.asp?id=42929531}
\transl
\jour Comput. Math. Math. Phys.
\yr 2020
\vol 60
\issue 7
\pages 1155--1162
\crossref{https://doi.org/10.1134/S0965542520070027}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=WOS:000557407900007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85089181854}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11104
  • https://www.mathnet.ru/eng/zvmmf/v60/i7/p1193
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:93
    References:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024