Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2020, Volume 60, Number 7, Pages 1151–1169
DOI: https://doi.org/10.31857/S0044466920070054
(Mi zvmmf11102)
 

This article is cited in 4 scientific papers (total in 4 papers)

Application of supporting integral curves and generalized invariant unbiased estimation for the study of a multidimensional dynamical system

Yu. G. Bulychev

All-Russia Research Institute "Gradient", Rostov-on-Don, 344000 Russia
Citations (4)
References:
Abstract: The well-known methods of supporting integral curves and generalized invariant unbiased estimation are used to find numerical-analytical representations of the solution to an equation describing a dynamical system and its measured output and to compute optimal values of continuous linear functionals (numerical characteristics) of measured parameters based on incorrect data involving both a fluctuation error and a singular disturbance. A two-step method is developed for this purpose. Numerical-analytical representations depending continuously on all parameters of the system are formed at the first stage, and numerical characteristics of the system that are invariant under the singular disturbance are estimated at the second stage. The method ensures the maximum possible decomposition of the numerical procedures involved; moreover, it does not require traditional linearization or initial guess choice and does not involve the computation of spectral coefficients in finite linear combinations (with given basis functions) describing the integral curves, measured parameters, and the singular disturbance. The random and systematic errors are analyzed, an illustrative example is given, and recommendations on practical application of the results are made.
Key words: dynamical system, measured parameters, continuous linear functional (numerical characteristic), incorrect data, fluctuation error, singular disturbance, optimal estimation, supporting integral curves, Lagrange multiplier method, unbiasedness and invariance conditions.
Received: 01.07.2019
Revised: 27.01.2020
Accepted: 10.03.2020
English version:
Computational Mathematics and Mathematical Physics, 2020, Volume 60, Issue 7, Pages 1116–1133
DOI: https://doi.org/10.1134/S0965542520070052
Bibliographic databases:
Document Type: Article
UDC: 519.652
Language: Russian
Citation: Yu. G. Bulychev, “Application of supporting integral curves and generalized invariant unbiased estimation for the study of a multidimensional dynamical system”, Zh. Vychisl. Mat. Mat. Fiz., 60:7 (2020), 1151–1169; Comput. Math. Math. Phys., 60:7 (2020), 1116–1133
Citation in format AMSBIB
\Bibitem{Bul20}
\by Yu.~G.~Bulychev
\paper Application of supporting integral curves and generalized invariant unbiased estimation for the study of a multidimensional dynamical system
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2020
\vol 60
\issue 7
\pages 1151--1169
\mathnet{http://mi.mathnet.ru/zvmmf11102}
\crossref{https://doi.org/10.31857/S0044466920070054}
\elib{https://elibrary.ru/item.asp?id=42929518}
\transl
\jour Comput. Math. Math. Phys.
\yr 2020
\vol 60
\issue 7
\pages 1116--1133
\crossref{https://doi.org/10.1134/S0965542520070052}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=WOS:000557407900005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85089176358}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11102
  • https://www.mathnet.ru/eng/zvmmf/v60/i7/p1151
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024