Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2020, Volume 60, Number 7, Pages 1143–1150
DOI: https://doi.org/10.31857/S004446692007008X
(Mi zvmmf11101)
 

This article is cited in 3 scientific papers (total in 3 papers)

A heuristic adaptive fast gradient method in stochastic optimization problems

A. V. Ogal'tsov, A. I. Turin

State University – Higher School of Economics, Moscow, 101000 Russia
Citations (3)
References:
Abstract: A fast adaptive heuristic stochastic gradient descent method is proposed. It is shown that this algorithm has a higher convergence rate in practical problems than currently popular optimization methods. Furthermore, a justification of this method is given, and difficulties that prevent obtaining optimal estimates for the proposed algorithm are described.
Key words: fast gradient descent, stochastic optimization, adaptive optimization.
Funding agency Grant number
Russian Foundation for Basic Research 19-31-90062 Аспиранты
The work by A. I. Tyurin was supported by the Russian Foundation for Basic Research, project no. 19-31-90062 Aspiranty.
Received: 07.10.2019
Revised: 12.11.2019
Accepted: 10.03.2020
English version:
Computational Mathematics and Mathematical Physics, 2020, Volume 60, Issue 7, Pages 1108–1115
DOI: https://doi.org/10.1134/S0965542520070088
Bibliographic databases:
Document Type: Article
UDC: 519.85
Language: Russian
Citation: A. V. Ogal'tsov, A. I. Turin, “A heuristic adaptive fast gradient method in stochastic optimization problems”, Zh. Vychisl. Mat. Mat. Fiz., 60:7 (2020), 1143–1150; Comput. Math. Math. Phys., 60:7 (2020), 1108–1115
Citation in format AMSBIB
\Bibitem{OgaTur20}
\by A.~V.~Ogal'tsov, A.~I.~Turin
\paper A heuristic adaptive fast gradient method in stochastic optimization problems
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2020
\vol 60
\issue 7
\pages 1143--1150
\mathnet{http://mi.mathnet.ru/zvmmf11101}
\crossref{https://doi.org/10.31857/S004446692007008X}
\elib{https://elibrary.ru/item.asp?id=42929514}
\transl
\jour Comput. Math. Math. Phys.
\yr 2020
\vol 60
\issue 7
\pages 1108--1115
\crossref{https://doi.org/10.1134/S0965542520070088}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=WOS:000557407900004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85089149915}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11101
  • https://www.mathnet.ru/eng/zvmmf/v60/i7/p1143
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:81
    References:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024