Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2020, Volume 60, Number 7, Pages 1126–1142
DOI: https://doi.org/10.31857/S0044466920050026
(Mi zvmmf11100)
 

This article is cited in 2 scientific papers (total in 2 papers)

Synthesis of locally lumped controls for membrane stabilization with optimization of sensor and vibration suppressor locations

K. R. Aida-zadeab, V. A. Hashimovb

a Institute of Control Systems, Azerbaijan National Academy of Sciences, Baku, AZ1141 Azerbaijan
b Institute of Mathematics and Mechanics, Azerbaijan National Academy of Sciences, Baku, AZ1141 Azerbaijan
Citations (2)
References:
Abstract: An approach for synthesizing a control function for lumped sources in distributed feedback systems is proposed. The problem of membrane vibration suppression by point stabilizers is considered as an example. The parameters to be optimized in the problem are (1) the locations of the stabilizers, (2) the locations of the points of membrane state measurements, and (3) linear feedback parameters determining the dependence between the membrane state measurements and the stabilizer operation modes. Formulas for computing the gradient of the cost functional with respect to the optimization parameters are derived. Computer experiments are performed using first-order numerical optimization methods, and the influence exerted by measurement errors on the process of membrane stabilization is analyzed.
Key words: thin membrane, vibrations, control synthesis, lumped source, neighborhood of a control point, loaded differential equation, gradient projection method.
Received: 29.07.2019
Revised: 29.07.2019
Accepted: 10.03.2020
English version:
Computational Mathematics and Mathematical Physics, 2020, Volume 60, Issue 7, Pages 1092–1107
DOI: https://doi.org/10.1134/S0965542520050024
Bibliographic databases:
Document Type: Article
UDC: 519.622
Language: Russian
Citation: K. R. Aida-zade, V. A. Hashimov, “Synthesis of locally lumped controls for membrane stabilization with optimization of sensor and vibration suppressor locations”, Zh. Vychisl. Mat. Mat. Fiz., 60:7 (2020), 1126–1142; Comput. Math. Math. Phys., 60:7 (2020), 1092–1107
Citation in format AMSBIB
\Bibitem{AidHas20}
\by K.~R.~Aida-zade, V.~A.~Hashimov
\paper Synthesis of locally lumped controls for membrane stabilization with optimization of sensor and vibration suppressor locations
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2020
\vol 60
\issue 7
\pages 1126--1142
\mathnet{http://mi.mathnet.ru/zvmmf11100}
\crossref{https://doi.org/10.31857/S0044466920050026}
\elib{https://elibrary.ru/item.asp?id=42929510}
\transl
\jour Comput. Math. Math. Phys.
\yr 2020
\vol 60
\issue 7
\pages 1092--1107
\crossref{https://doi.org/10.1134/S0965542520050024}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=WOS:000557407900003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85089177914}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11100
  • https://www.mathnet.ru/eng/zvmmf/v60/i7/p1126
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:91
    References:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024