Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2020, Volume 60, Number 6, Pages 1066–1073
DOI: https://doi.org/10.31857/S0044466920060083
(Mi zvmmf11096)
 

This article is cited in 6 scientific papers (total in 6 papers)

Inverse problem of electrodynamics for anisotropic medium: linear approximation

V. G. Romanov

Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090 Russia
Citations (6)
References:
Abstract: For electrodynamic equations with permittivity specified by a symmetric matrix $\varepsilon (x)=({{\varepsilon }_{{ij}}}(x),i,j=1,2,3)$, the inverse problem of determining this matrix from information on solutions of these equations is considered. It is assumed that the permittivity is a given positive constant ${\varepsilon}_{0}>0$ outside a bounded domain $\Omega \subset {{\mathbb{R}}^{3}}$, while, inside $\Omega $, it is an anisotropic quantity such that the differences ${{\varepsilon }_{{ij}}}(x)-{{\varepsilon }_{0}}{{\delta }_{{ij}}}=:{{\tilde {\varepsilon }}_{{ij}}}(x),$ $i,j=1,2,3,$ are small. Here, ${{\delta }_{{ij}}}$ is the Kronecker delta. The inverse problem is studied in the linear approximation. The structure of the solution to a linearized direct problem for the electrodynamic equations is investigated, and it is proved that all elements of the matrix $\tilde {\varepsilon }(x)={{\tilde {\varepsilon }}_{{ij}}}(x), i,j=1,2,3$, can be uniquely determined by special observation data. Moreover, the problem of recovering the diagonal components ${{\tilde {\varepsilon }}_{{ij}}}(x), i=1,2,3,$ leads to a usual X-ray tomography problem, so these components can be efficiently computed. The recovery of the other components leads to a more complicated algorithmic procedure.
Key words: Maxwell's equations, anisotropy, inverse problem, linearization, plane wave, solution structure, tomography.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 0314-2018-0010
This work was supported by the comprehensive basic research program II.1 of the Siberian Branch of the Russian Academy of Sciences, project no. 0314-2018-0010.
Received: 24.10.2019
Revised: 24.10.2019
Accepted: 11.01.2020
English version:
Computational Mathematics and Mathematical Physics, 2020, Volume 60, Issue 6, Pages 1037–1044
DOI: https://doi.org/10.1134/S0965542520060081
Bibliographic databases:
Document Type: Article
UDC: 517.946
Language: Russian
Citation: V. G. Romanov, “Inverse problem of electrodynamics for anisotropic medium: linear approximation”, Zh. Vychisl. Mat. Mat. Fiz., 60:6 (2020), 1066–1073; Comput. Math. Math. Phys., 60:6 (2020), 1037–1044
Citation in format AMSBIB
\Bibitem{Rom20}
\by V.~G.~Romanov
\paper Inverse problem of electrodynamics for anisotropic medium: linear approximation
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2020
\vol 60
\issue 6
\pages 1066--1073
\mathnet{http://mi.mathnet.ru/zvmmf11096}
\crossref{https://doi.org/10.31857/S0044466920060083}
\elib{https://elibrary.ru/item.asp?id=42809613}
\transl
\jour Comput. Math. Math. Phys.
\yr 2020
\vol 60
\issue 6
\pages 1037--1044
\crossref{https://doi.org/10.1134/S0965542520060081}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=WOS:000555591800011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85088938307}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11096
  • https://www.mathnet.ru/eng/zvmmf/v60/i6/p1066
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025