Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2020, Volume 60, Number 6, Pages 1053–1065
DOI: https://doi.org/10.31857/S0044466920060071
(Mi zvmmf11095)
 

This article is cited in 5 scientific papers (total in 5 papers)

Application of neural networks in nonlinear inverse problems of geophysics

E. A. Oborneva, I. E. Obornevb, E. A. Rodionova, M. I. Shimelevicha

a Russian State Geological Prospecting University, Moscow, 117485 Russia
b Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow, 119991 Russia
Citations (5)
References:
Abstract: Neural networks (NN) are widely used for solving various problems of geophysical data interpretation and processing. The application of the neural network approximation (NNA) method for solving inverse problems, including inverse multicriteria problems of geophysics that are reduced to a nonlinear operator equation of first kind (respectively, to a system of operator equations) is considered. The NNA method assumes the construction of an approximate inverse operator of the problem using neural network approximation designs (MLP networks) on the basis of a preliminary constructed set of reference solutions to direct and inverse problems. A review of the application of the NNA method for solving nonlinear inverse problems of geophysics is given. Techniques for estimating the practical ambiguity (error) of approximate solutions to inverse multicriteria problems are considered. Results of solving the inverse two-criteria 2D gravimetry problem in combination with magnetometry are presented.
Key words: inverse problem, approximation, a priori and a posteriori estimates, neural networks, joint data interpretation, multicriteria inverse problem, big data.
Funding agency Grant number
Russian Science Foundation 19-11-00333
This work was supported by the Russian Science Foundation. project no. 19-11-00333.
Received: 20.01.2020
Revised: 20.02.2020
Accepted: 11.02.2020
English version:
Computational Mathematics and Mathematical Physics, 2020, Volume 60, Issue 6, Pages 1025–1036
DOI: https://doi.org/10.1134/S096554252006007X
Bibliographic databases:
Document Type: Article
UDC: 550.837
Language: Russian
Citation: E. A. Obornev, I. E. Obornev, E. A. Rodionov, M. I. Shimelevich, “Application of neural networks in nonlinear inverse problems of geophysics”, Zh. Vychisl. Mat. Mat. Fiz., 60:6 (2020), 1053–1065; Comput. Math. Math. Phys., 60:6 (2020), 1025–1036
Citation in format AMSBIB
\Bibitem{OboOboRod20}
\by E.~A.~Obornev, I.~E.~Obornev, E.~A.~Rodionov, M.~I.~Shimelevich
\paper Application of neural networks in nonlinear inverse problems of geophysics
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2020
\vol 60
\issue 6
\pages 1053--1065
\mathnet{http://mi.mathnet.ru/zvmmf11095}
\crossref{https://doi.org/10.31857/S0044466920060071}
\elib{https://elibrary.ru/item.asp?id=42809608 }
\transl
\jour Comput. Math. Math. Phys.
\yr 2020
\vol 60
\issue 6
\pages 1025--1036
\crossref{https://doi.org/10.1134/S096554252006007X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=WOS:000555591800010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85089005392}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11095
  • https://www.mathnet.ru/eng/zvmmf/v60/i6/p1053
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025