Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2020, Volume 60, Number 6, Pages 963–974
DOI: https://doi.org/10.31857/S0044466920060113
(Mi zvmmf11088)
 

Iterative Fejér processes in ill-posed problems

V. V. Vasinab

a Krasovskii Institute of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences, Yekaterinburg, 620990 Russia
b Ural Federal University, Yekaterinburg, 620002 Russia
References:
Abstract: A brief survey is given concerning iterative processes of Fejér type for basic statements of ill-posed problems, including constrained quadratic and convex minimization problems, variational inequalities, and linear and nonlinear operator equations in Hilbert spaces. By applying the method of successive approximations and its modification using correction factors, all these statements reduce to the problem of finding fixed points of nonexpansive Fejér operators. Material is also presented related to a two-stage method of constructing a regularizing algorithm for nonlinear ill-posed problems with monotone operators. An economic way is described by which the algorithm takes into account additional a priori information on the solution using Fejér maps.
Key words: Fejér process, ill-posed problem, regularizing algorithm, fixed-point approximation, a priori information.
Received: 25.09.2019
Revised: 25.09.2019
Accepted: 11.02.2020
English version:
Computational Mathematics and Mathematical Physics, 2020, Volume 60, Issue 6, Pages 938–949
DOI: https://doi.org/10.1134/S0965542520060111
Bibliographic databases:
Document Type: Article
UDC: 517.988.68
Language: Russian
Citation: V. V. Vasin, “Iterative Fejér processes in ill-posed problems”, Zh. Vychisl. Mat. Mat. Fiz., 60:6 (2020), 963–974; Comput. Math. Math. Phys., 60:6 (2020), 938–949
Citation in format AMSBIB
\Bibitem{Vas20}
\by V.~V.~Vasin
\paper Iterative Fej\'er processes in ill-posed problems
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2020
\vol 60
\issue 6
\pages 963--974
\mathnet{http://mi.mathnet.ru/zvmmf11088}
\crossref{https://doi.org/10.31857/S0044466920060113}
\elib{https://elibrary.ru/item.asp?id=42809581}
\transl
\jour Comput. Math. Math. Phys.
\yr 2020
\vol 60
\issue 6
\pages 938--949
\crossref{https://doi.org/10.1134/S0965542520060111}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=WOS:000555591800003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85088867897}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11088
  • https://www.mathnet.ru/eng/zvmmf/v60/i6/p963
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025