Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2020, Volume 60, Number 4, Pages 700–710
DOI: https://doi.org/10.31857/S0044466920040067
(Mi zvmmf11068)
 

This article is cited in 6 scientific papers (total in 6 papers)

On the stability of plasma equilibrium in the neighborhood of a straight current conductor

K. V. Brushlinskiiab, S. A. Krivtsovb, E. V. Stepinab

a Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Moscow, 125047 Russia
b National Research Nuclear University MEPhI, Moscow, 115409 Russia
Citations (6)
References:
Abstract: The article presents a mathematical model of an equilibrium magnetoplasma configuration in a plasma cylinder containing on its axis a conductor of finite diameter with a current creating a magnetic field confining the plasma. The annular configurations considered here are the simplest elements of a wide class of galatea traps with conductors immersed in the plasma volume. The problems concerning such configurations have a simple analytical solution in terms of ordinary differential equations. A simple result on the existence of smooth equilibrium configurations with restrictions on the maximum plasma pressure related to magnetic units is obtained. The problems of the stability of the configurations–full-scale MHD stability and intermediate stability to perturbations of the same dimension–are formulated and solved. It is shown that intermediate stability takes place within a specified restrictions on pressure and MHD stability tightens this restrictions due to corrugated perturbations depending on the axial coordinate.
Key words: mathematical model, plasma confinement, magnetic traps, equilibrium, stability.
Funding agency Grant number
Russian Science Foundation 16-11-10278
This work was supported by the Russian Science Foundation (project no. 16-11-10278).
Received: 14.11.2019
Revised: 14.11.2019
Accepted: 16.12.2019
English version:
Computational Mathematics and Mathematical Physics, 2020, Volume 60, Issue 4, Pages 686–696
DOI: https://doi.org/10.1134/S0965542520040065
Bibliographic databases:
Document Type: Article
UDC: 533.9
Language: Russian
Citation: K. V. Brushlinskii, S. A. Krivtsov, E. V. Stepin, “On the stability of plasma equilibrium in the neighborhood of a straight current conductor”, Zh. Vychisl. Mat. Mat. Fiz., 60:4 (2020), 700–710; Comput. Math. Math. Phys., 60:4 (2020), 686–696
Citation in format AMSBIB
\Bibitem{BruKriSte20}
\by K.~V.~Brushlinskii, S.~A.~Krivtsov, E.~V.~Stepin
\paper On the stability of plasma equilibrium in the neighborhood of a straight current conductor
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2020
\vol 60
\issue 4
\pages 700--710
\mathnet{http://mi.mathnet.ru/zvmmf11068}
\crossref{https://doi.org/10.31857/S0044466920040067}
\elib{https://elibrary.ru/item.asp?id=42605093}
\transl
\jour Comput. Math. Math. Phys.
\yr 2020
\vol 60
\issue 4
\pages 686--696
\crossref{https://doi.org/10.1134/S0965542520040065}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000539033500014}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85086153461}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11068
  • https://www.mathnet.ru/eng/zvmmf/v60/i4/p700
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:132
    References:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024