Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2020, Volume 60, Number 4, Pages 601–611
DOI: https://doi.org/10.31857/S0044466920040183
(Mi zvmmf11059)
 

This article is cited in 1 scientific paper (total in 1 paper)

Problems on a semiaxis for an integro-differential equation with quadratic nonlinearity

V. L. Vaskevichab

a Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090 Russia
b Novosibirsk State University, Novosibirsk, 630090 Russia
Citations (1)
References:
Abstract: A functional equation is considered in which a linear combination of a two-variable function and its time derivative is set equal to the double integral of a quadratic expression of the same function with respect to space variables. For the resulting integro-differential equation with quadratic nonlinearity, the Cauchy problem with initial data continuous and bounded on the positive semiaxis is investigated. The convergence of the classical method of successive approximations is proved. The accuracy of the approximation is estimated depending on the index of the iterative solution. It is proved that the problem has a solution in associated function spaces, and the uniqueness of this solution is established. An a priori estimate for solutions from the associated well-posedness class is derived. A guaranteed time interval of solution existence is found.
Key words: integro-differential equation, quadratic nonlinearity, Cauchy problem, existence theorem, successive approximations, a priori estimate.
Funding agency Grant number
Russian Foundation for Basic Research 19-01-00422
This work was supported by the Russian Foundation for Basic Research, project no. 19-01-00422.
Received: 02.12.2019
Revised: 09.12.2019
Accepted: 16.12.2019
English version:
Computational Mathematics and Mathematical Physics, 2020, Volume 60, Issue 4, Pages 590–600
DOI: https://doi.org/10.1134/S0965542520040181
Bibliographic databases:
Document Type: Article
UDC: 517.968.74
Language: Russian
Citation: V. L. Vaskevich, “Problems on a semiaxis for an integro-differential equation with quadratic nonlinearity”, Zh. Vychisl. Mat. Mat. Fiz., 60:4 (2020), 601–611; Comput. Math. Math. Phys., 60:4 (2020), 590–600
Citation in format AMSBIB
\Bibitem{Vas20}
\by V.~L.~Vaskevich
\paper Problems on a semiaxis for an integro-differential equation with quadratic nonlinearity
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2020
\vol 60
\issue 4
\pages 601--611
\mathnet{http://mi.mathnet.ru/zvmmf11059}
\crossref{https://doi.org/10.31857/S0044466920040183}
\elib{https://elibrary.ru/item.asp?id=42605082}
\transl
\jour Comput. Math. Math. Phys.
\yr 2020
\vol 60
\issue 4
\pages 590--600
\crossref{https://doi.org/10.1134/S0965542520040181}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000539033500005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85086049603}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11059
  • https://www.mathnet.ru/eng/zvmmf/v60/i4/p601
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:82
    References:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024