Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2020, Volume 60, Number 4, Pages 553–566
DOI: https://doi.org/10.31857/S0044466920040031
(Mi zvmmf11055)
 

This article is cited in 6 scientific papers (total in 6 papers)

Superconvergent algorithms for the numerical solution of the Laplace equation in smooth axisymmetric domains

V. N. Belykh

Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090 Russia
Citations (6)
References:
Abstract: A fundamentally new–nonsaturable–method is constructed for the numerical solution of elliptic boundary value problems for the Laplace equation in ${{C}^{\infty}}$-smooth axisymmetric domains of fairly arbitrary shape. A distinctive feature of the method is that it has a zero leading error term. As a result, the method is automatically adjusted to any redundant (extraordinary) smoothness of the solutions to be found. The method enriches practice with a new computational tool capable of inheriting, in discretized form, both differential and spectral characteristics of the operator of the problem under study. This underlies the construction of a numerical solution of guaranteed quality (accuracy) if the elliptic problem under study has a sufficiently smooth (e.g., ${{C}^{\infty }}$-smooth) solution. The result obtained is of fundamental importance, since, in the case of ${{C}^{\infty }}$-smooth solutions, the solution is constructed with an absolutely sharp exponential error estimate. The sharpness of the estimate is caused by the fact that the Aleksandrov $m$-width of the compact set of ${{C}^{\infty }}$-smooth functions, which contains the exact solution of the problem, is asymptotically represented in the form of an exponential function decaying to zero (with growing integer parameter $m$).
Key words: Laplace equation, axial symmetry, nonsaturable numerical method, well-posedness, exponential convergence.
Received: 14.11.2019
Revised: 14.11.2019
Accepted: 16.12.2019
English version:
Computational Mathematics and Mathematical Physics, 2020, Volume 60, Issue 4, Pages 545–557
DOI: https://doi.org/10.1134/S096554252004003X
Bibliographic databases:
Document Type: Article
UDC: 519.642
Language: Russian
Citation: V. N. Belykh, “Superconvergent algorithms for the numerical solution of the Laplace equation in smooth axisymmetric domains”, Zh. Vychisl. Mat. Mat. Fiz., 60:4 (2020), 553–566; Comput. Math. Math. Phys., 60:4 (2020), 545–557
Citation in format AMSBIB
\Bibitem{Bel20}
\by V.~N.~Belykh
\paper Superconvergent algorithms for the numerical solution of the Laplace equation in smooth axisymmetric domains
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2020
\vol 60
\issue 4
\pages 553--566
\mathnet{http://mi.mathnet.ru/zvmmf11055}
\crossref{https://doi.org/10.31857/S0044466920040031}
\elib{https://elibrary.ru/item.asp?id=42605078}
\transl
\jour Comput. Math. Math. Phys.
\yr 2020
\vol 60
\issue 4
\pages 545--557
\crossref{https://doi.org/10.1134/S096554252004003X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000539033500001}
\elib{https://elibrary.ru/item.asp?id=43288651}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85086228130}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11055
  • https://www.mathnet.ru/eng/zvmmf/v60/i4/p553
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:120
    References:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024