Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2020, Volume 60, Number 1, Pages 80–87
DOI: https://doi.org/10.31857/S0044466920010111
(Mi zvmmf11016)
 

This article is cited in 6 scientific papers (total in 6 papers)

Application of computer algebra methods to investigation of stationary motions of a system of two connected bodies moving in a circular orbit

S. A. Gutnikab, V. A. Sarychevc

a MGIMO University, Moscow, 119454 Russia
b Moscow Institute of Physics and Technology (National Research University), Dolgoprudnyi, Moscow oblast, 141701 Russia
c Federal Research Center Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Moscow, 125047 Russia
Citations (6)
References:
Abstract: Computer algebra and numerical methods were used to investigate the properties of a nonlinear algebraic system determining the equilibrium orientations of a system of two bodies connected by a spherical hinge that move in a circular orbit under the action of a gravitational torque. Primary attention was given to equilibrium orientations of the two-body system in the special cases when one of the principal axes of inertia of both the first and second body coincides with the normal to the orbital plane, the radius vector, or the tangent to the orbit. To determine the equilibrium orientations of the two-body system, the set of stationary algebraic equations of motion was decomposed into nine subsystems. The system of algebraic equations was solved by applying algorithms for constructing Gröbner bases. The equilibrium positions were determined by numerically analyzing the roots of the algebraic equations from the constructed Gröbner basis.
Key words: system of two bodies, circular orbit, Lagrange equations, equilibrium positions, computer algebra, Gröbner basis.
Received: 15.06.2019
Revised: 29.07.2019
Accepted: 18.09.2019
English version:
Computational Mathematics and Mathematical Physics, 2020, Volume 60, Issue 1, Pages 74–81
DOI: https://doi.org/10.1134/S0965542520010091
Bibliographic databases:
Document Type: Article
UDC: 519.67
Language: Russian
Citation: S. A. Gutnik, V. A. Sarychev, “Application of computer algebra methods to investigation of stationary motions of a system of two connected bodies moving in a circular orbit”, Zh. Vychisl. Mat. Mat. Fiz., 60:1 (2020), 80–87; Comput. Math. Math. Phys., 60:1 (2020), 74–81
Citation in format AMSBIB
\Bibitem{GutSar20}
\by S.~A.~Gutnik, V.~A.~Sarychev
\paper Application of computer algebra methods to investigation of stationary motions of a system of two connected bodies moving in a circular orbit
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2020
\vol 60
\issue 1
\pages 80--87
\mathnet{http://mi.mathnet.ru/zvmmf11016}
\crossref{https://doi.org/10.31857/S0044466920010111}
\elib{https://elibrary.ru/item.asp?id=41806919}
\transl
\jour Comput. Math. Math. Phys.
\yr 2020
\vol 60
\issue 1
\pages 74--81
\crossref{https://doi.org/10.1134/S0965542520010091}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000521749800007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85082630771}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11016
  • https://www.mathnet.ru/eng/zvmmf/v60/i1/p80
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:84
    References:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024