Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2020, Volume 60, Number 1, Pages 29–38
DOI: https://doi.org/10.31857/S0044466920010068
(Mi zvmmf11012)
 

This article is cited in 2 scientific papers (total in 2 papers)

A study of secular perturbations of translational-rotational motion in a nonstationary two-body problem using computer algebra

S. B. Bizhanovaa, M. Zh. Minglibayevab, A. N. Prokopenyac

a Al-Farabi Kazakh National University, Almaty, 050040 Kazakhstan
b Fesenkov Astrophysical Institute, Almaty, 050020 Kazakhstan
c Warsaw University of Life Sciences, Warsaw, 02-776 Poland
Citations (2)
References:
Abstract: A nonstationary two-body problem is considered such that one of the bodies has a spherically symmetric density distribution and is central, while the other one is a satellite with axisymmetric dynamical structure, shape, and variable oblateness. Newton's interaction force is characterized by an approximate expression of the force function up to the second harmonic. The body masses vary isotropically at different rates. Equations of motion of the satellite in a relative system of coordinates are derived. The problem is studied by the methods of perturbation theory. Equations of secular perturbations of the translational-rotational motion of the satellite in analogues of Delaunay–Andoyer osculating elements are deduced. All necessary symbolic computations are performed using the Wolfram Mathematica computer algebra system.
Key words: variable mass, secular perturbations, axisymmetric body, translational-rotational motion.
Received: 29.07.2019
Revised: 29.07.2019
Accepted: 18.09.2019
English version:
Computational Mathematics and Mathematical Physics, 2020, Volume 60, Issue 1, Pages 26–35
DOI: https://doi.org/10.1134/S0965542520010054
Bibliographic databases:
Document Type: Article
UDC: 517.93
Language: Russian
Citation: S. B. Bizhanova, M. Zh. Minglibayev, A. N. Prokopenya, “A study of secular perturbations of translational-rotational motion in a nonstationary two-body problem using computer algebra”, Zh. Vychisl. Mat. Mat. Fiz., 60:1 (2020), 29–38; Comput. Math. Math. Phys., 60:1 (2020), 26–35
Citation in format AMSBIB
\Bibitem{BizMinPro20}
\by S.~B.~Bizhanova, M.~Zh.~Minglibayev, A.~N.~Prokopenya
\paper A study of secular perturbations of translational-rotational motion in a nonstationary two-body problem using computer algebra
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2020
\vol 60
\issue 1
\pages 29--38
\mathnet{http://mi.mathnet.ru/zvmmf11012}
\crossref{https://doi.org/10.31857/S0044466920010068}
\elib{https://elibrary.ru/item.asp?id=41806915}
\transl
\jour Comput. Math. Math. Phys.
\yr 2020
\vol 60
\issue 1
\pages 26--35
\crossref{https://doi.org/10.1134/S0965542520010054}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000521749800003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85082627171}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11012
  • https://www.mathnet.ru/eng/zvmmf/v60/i1/p29
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:82
    References:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024