Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2019, Volume 59, Number 12, Page 2131
DOI: https://doi.org/10.1134/S0044466919120196
(Mi zvmmf11004)
 

This article is cited in 1 scientific paper (total in 1 paper)

Higher-order accurate meshing of nonsmooth implicitly defined surfaces and intersection curves

J. W. Stanford, T.-P. Fries

Institute of Structural Analysis, Graz University of Technology Lessingstr. 25/II 8010 Graz, Austria
Citations (1)
Abstract: A higher-order accurate meshing algorithm for nonsmooth surfaces defined via Boolean set operations from smooth surfaces is presented. Input data are a set of level-set functions and a bounding box containing the domain of interest. This geometry definition allows the treatment of edges as intersection curves. Initially, the given bounding box is partitioned with an octree that is used to locate corners and points on the intersection curves. Once a point on an intersection curve is found, the edge is traced. Smooth surfaces are discretized using marching cubes and then merged together with the advancing-front method. The piecewise linear geometry is lifted by projecting the inner nodes of the Lagrangian elements onto the surface or intersection curve. To maintain an accurate mesh, special attention is paid to the accurate meshing of tangential intersection curves. Optimal convergence properties for approximation problems are confirmed in numerical studies.
Key words: higher-order finite elements, meshing, higher-order, implicit surface, intersection problems.
Received: 26.06.2019
Revised: 26.06.2019
Accepted: 05.08.2019
English version:
Computational Mathematics and Mathematical Physics, 2019, Volume 59, Issue 12, Pages 2093–2107
DOI: https://doi.org/10.1134/S0965542519120169
Bibliographic databases:
Document Type: Article
UDC: 519.63
Language: Russian
Citation: J. W. Stanford, T.-P. Fries, “Higher-order accurate meshing of nonsmooth implicitly defined surfaces and intersection curves”, Zh. Vychisl. Mat. Mat. Fiz., 59:12 (2019), 2131; Comput. Math. Math. Phys., 59:12 (2019), 2093–2107
Citation in format AMSBIB
\Bibitem{StaFri19}
\by J.~W.~Stanford, T.-P.~Fries
\paper Higher-order accurate meshing of nonsmooth implicitly defined surfaces and intersection curves
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2019
\vol 59
\issue 12
\pages 2131
\mathnet{http://mi.mathnet.ru/zvmmf11004}
\crossref{https://doi.org/10.1134/S0044466919120196}
\elib{https://elibrary.ru/item.asp?id=41240365}
\transl
\jour Comput. Math. Math. Phys.
\yr 2019
\vol 59
\issue 12
\pages 2093--2107
\crossref{https://doi.org/10.1134/S0965542519120169}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000514816500013}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85079722816}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11004
  • https://www.mathnet.ru/eng/zvmmf/v59/i12/p2131
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:53
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024