Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2019, Volume 59, Number 12, Pages 2111–2128
DOI: https://doi.org/10.1134/S0044466919120172
(Mi zvmmf11001)
 

This article is cited in 4 scientific papers (total in 4 papers)

Launch pad method in multiextremal multiobjective optimization problems

A. V. Lotov, A. I. Ryabikov

Dorodnicyn Computing Center, Federal Research Center "Computer Science and Control", Russian Academy of Sciences, Moscow, 119333 Russia
Citations (4)
References:
Abstract: A new method is proposed for approximating the Edgeworth–Pareto hull of a feasible objective set in a multiobjective optimization (MOO) problem with criteria functions having numerous local extrema. The method is based on constructing a launch pad, i.e., a subset of the feasible decision set such that gradient procedures for local optimization of criteria and scalarizing functions of criteria starting at these points yield efficient decisions of the MOO problem. A launch pad is constructed using the optima injection method, which combines the usual multistart approach with a genetic algorithm for Pareto frontier approximation. It is shown that the proposed launch pad method (LPM) can also be used to approximate the effective hull of a nonconvex multidimensional set. A theoretical analysis of LPM is presented, and experimental results are given for the applied problem of constructing control rules for a cascade of reservoirs, which is reduced to a complicated MOO problem with scalarizing functions having numerous local extrema.
Key words: nonlinear multiobjective optimization, Pareto frontier, Edgeworth–Pareto hull, effective hull of a nonconvex set, approximation of Edgeworth–Pareto hull, approximation of the effective hull of a multidimensional set.
Funding agency Grant number
Russian Foundation for Basic Research 17-29-05108 офи_м
This work was supported in part by the Russian Foundation for Basic Research, project no. 17-29-05108 ofi_m.
Received: 08.07.2019
Revised: 08.07.2019
Accepted: 05.08.2019
English version:
Computational Mathematics and Mathematical Physics, 2019, Volume 59, Issue 12, Pages 2041–2056
DOI: https://doi.org/10.1134/S0965542519120145
Bibliographic databases:
Document Type: Article
UDC: 7.977.5
Language: Russian
Citation: A. V. Lotov, A. I. Ryabikov, “Launch pad method in multiextremal multiobjective optimization problems”, Zh. Vychisl. Mat. Mat. Fiz., 59:12 (2019), 2111–2128; Comput. Math. Math. Phys., 59:12 (2019), 2041–2056
Citation in format AMSBIB
\Bibitem{LotRya19}
\by A.~V.~Lotov, A.~I.~Ryabikov
\paper Launch pad method in multiextremal multiobjective optimization problems
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2019
\vol 59
\issue 12
\pages 2111--2128
\mathnet{http://mi.mathnet.ru/zvmmf11001}
\crossref{https://doi.org/10.1134/S0044466919120172}
\elib{https://elibrary.ru/item.asp?id=41240362}
\transl
\jour Comput. Math. Math. Phys.
\yr 2019
\vol 59
\issue 12
\pages 2041--2056
\crossref{https://doi.org/10.1134/S0965542519120145}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000514816500010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85079699242}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11001
  • https://www.mathnet.ru/eng/zvmmf/v59/i12/p2111
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024