Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2019, Volume 59, Number 12, Pages 2060–2076
DOI: https://doi.org/10.1134/S0044466919120032
(Mi zvmmf10997)
 

Local algorithms for minimizing the force field for 3D representation of macromolecules

A. S. Anikina, O. A. Bol'shakovab, A. V. Gasnikovcd, A. Yu. Gornova, T. V. Ermake, D. V. Makarenkoc, V. P. Morozove, B. O. Neterebskiie, P. A. Yakovleve

a Matrosov Institute for System Dynamics and Control Theory of Siberian Branch of Russian Academy of Sciences
b University of Science and Technology "Sirius"
c Moscow Institute of Physics and Technology (State University)
d Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute)
e BIOCAD, St-Petersburg
References:
Abstract: The majority of problems in structural computational biology require minimization of the energy function (force field) defined on the molecule geometry. This makes it possible to determine properties of molecules, predict the correct arrangement of protein chains, find the best molecular docking for complex formation, verify hypotheses concerning the protein design, and solve other problems arising in modern drug development. In the case of low-molecular compounds (consisting of less than 250 atoms), the problem of finding the geometry that minimizes the energy function is well studied. The minimization of macromolecules (in particular, proteins) consisting of tens of thousands of atoms is more difficult. However, a distinctive feature of statements of these problems is that initial approximations that are close to the solution are often available. Therefore, the original problem can be formulated as a problem of nonconvex optimization in the space of about ${{10}^{4}}$ variables. The complexity of computing the function and its gradient is quadratic in the number variables. A comparative analysis of gradient-free methods with gradient-type methods (gradient descent, fast gradient descent, conjugate gradient, and quasi-Newton methods) in their GPU implementations is carried out.
Key words: energy minimization, homological folding, fast gradient descent, conjugate gradient method, limited-memory Broyden-Fletcher–Goldfarb–Shanno (LBFGS), parallel computations, Graphical Processing Unit (GPU).
Funding agency Grant number
Russian Foundation for Basic Research 18-07-00587
18-29-03071 ìê
Russian Science Foundation 17-11-01027
The work by A.Yu. Gornov was supported by the Russian Foundation for Basic Research, project no. 18-07-00587. The work by A.S. Anikin was supported by the Russian Foundation for Basic Research, project no. 18-29-03071. The work by A.V. Gasnikov was supported by the Russian Science Foundation, project no. 17-11-01027.
Received: 08.10.2018
Revised: 15.07.2019
Accepted: 05.08.2019
English version:
Computational Mathematics and Mathematical Physics, 2019, Volume 59, Issue 12, Pages 1994–2008
DOI: https://doi.org/10.1134/S0965542519120030
Bibliographic databases:
Document Type: Article
UDC: 519.85
Language: Russian
Citation: A. S. Anikin, O. A. Bol'shakova, A. V. Gasnikov, A. Yu. Gornov, T. V. Ermak, D. V. Makarenko, V. P. Morozov, B. O. Neterebskii, P. A. Yakovlev, “Local algorithms for minimizing the force field for 3D representation of macromolecules”, Zh. Vychisl. Mat. Mat. Fiz., 59:12 (2019), 2060–2076; Comput. Math. Math. Phys., 59:12 (2019), 1994–2008
Citation in format AMSBIB
\Bibitem{AniBolGas19}
\by A.~S.~Anikin, O.~A.~Bol'shakova, A.~V.~Gasnikov, A.~Yu.~Gornov, T.~V.~Ermak, D.~V.~Makarenko, V.~P.~Morozov, B.~O.~Neterebskii, P.~A.~Yakovlev
\paper Local algorithms for minimizing the force field for 3D representation of macromolecules
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2019
\vol 59
\issue 12
\pages 2060--2076
\mathnet{http://mi.mathnet.ru/zvmmf10997}
\crossref{https://doi.org/10.1134/S0044466919120032}
\elib{https://elibrary.ru/item.asp?id=41240358}
\transl
\jour Comput. Math. Math. Phys.
\yr 2019
\vol 59
\issue 12
\pages 1994--2008
\crossref{https://doi.org/10.1134/S0965542519120030}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000514816500006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85079698984}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10997
  • https://www.mathnet.ru/eng/zvmmf/v59/i12/p2060
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Æóðíàë âû÷èñëèòåëüíîé ìàòåìàòèêè è ìàòåìàòè÷åñêîé ôèçèêè Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024