Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2019, Volume 59, Number 12, Pages 2024–2044
DOI: https://doi.org/10.1134/S004446691912007X
(Mi zvmmf10994)
 

This article is cited in 3 scientific papers (total in 3 papers)

Hybrid Voronoi mesh generation: algorithms and unsolved problems

V. A. Garanzhaab, L. N. Kudryavtsevaabc, V. O. Tsvetkovac

a Dorodnicyn Computing Center, Federal Research Center "Computer Science and Control," Russian Academy of Sciences, Moscow, 119333 Russia
b Moscow Institute of Physics and Technology (State University), Dolgoprudnyi, Moscow oblast, 141701 Russia
c Federal Research Center Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Moscow, 125047 Russia
Citations (3)
References:
Abstract: We consider problem of constructing Voronoi mesh where the union of Voronoi cells approximates the computational domain with a piecewise smooth boundary. In the 2d case the smooth boundary fragments are approximated by the Voronoi edges and Voronoi vertices are placed near summits of sharp boundary corners. We suggest self-organization meshing algorithm which covers the boundary of domain by an almost-structured band of non-simplicial Delaunay cells. This band consists of quadrangles on the smooth boundary segment and convex polygons around sharp corners. Dual Voronoi mesh is double layered orthogonal structure where central line of the layer approximates the boundary. Overall Voronoi mesh has a hybrid structure and consists of high quality convex polygons in the core of the domain and orthogonal layered structure near boundaries. We introduce refinement schemes for the Voronoi boundary layers, in particular near sharp corners. In the case when the boundary of domain is defined explicitly we suggest Voronoi meshing algorithm based on circle placement on the boundary. We discuss problems related to 3d case generalization of suggested algorithm and illustrate ideas and difficulties on relatively simple 3d test cases.
Key words: Delaunay–Voronoi meshes, orthogonal Voronoi meshes, polygonal meshes, polyhedral meshes.
Funding agency Grant number
Russian Foundation for Basic Research 18-01-00726 А
This work was supported by the Russian Foundation for Basic Research, grant 18-01-00726 A.
Received: 26.06.2019
Revised: 26.06.2019
Accepted: 05.08.2019
English version:
Computational Mathematics and Mathematical Physics, 2019, Volume 59, Issue 12, Pages 1945–1964
DOI: https://doi.org/10.1134/S0965542519120078
Bibliographic databases:
Document Type: Article
UDC: 519.63
Language: Russian
Citation: V. A. Garanzha, L. N. Kudryavtseva, V. O. Tsvetkova, “Hybrid Voronoi mesh generation: algorithms and unsolved problems”, Zh. Vychisl. Mat. Mat. Fiz., 59:12 (2019), 2024–2044; Comput. Math. Math. Phys., 59:12 (2019), 1945–1964
Citation in format AMSBIB
\Bibitem{GarKudTsv19}
\by V.~A.~Garanzha, L.~N.~Kudryavtseva, V.~O.~Tsvetkova
\paper Hybrid Voronoi mesh generation: algorithms and unsolved problems
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2019
\vol 59
\issue 12
\pages 2024--2044
\mathnet{http://mi.mathnet.ru/zvmmf10994}
\crossref{https://doi.org/10.1134/S004446691912007X}
\elib{https://elibrary.ru/item.asp?id=41240355}
\transl
\jour Comput. Math. Math. Phys.
\yr 2019
\vol 59
\issue 12
\pages 1945--1964
\crossref{https://doi.org/10.1134/S0965542519120078}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000514816500003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85079717477}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10994
  • https://www.mathnet.ru/eng/zvmmf/v59/i12/p2024
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:99
    References:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024