Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2020, Volume 60, Number 12, Pages 2050–2054
DOI: https://doi.org/10.31857/S0044466920120108
(Mi zvmmf10990)
 

General numerical methods

Difference scheme for the numerical solution of the Burgers equation

V. V. Markova, V. N. Utesinovb

a Steklov Mathematical Institute, Russian Academy of Sciences, Moscow, 119991 Russia
b Kostyakov All-Russia Research Institute for Hydraulic Engineering and Land Reclamation, Moscow, 127550 Russia
References:
Abstract: A second-order accurate finite-difference scheme based on existing methods is proposed for the numerical solution of the one-dimensional Burgers equation. A stability condition is given under which the integration time step does not depend on the value of the viscous term. The numerical results produced by the scheme are compared with the exact solution of the Burgers equation.
Key words: Burgers equation, difference scheme, stability condition for difference scheme.
Funding agency Grant number
Russian Science Foundation 19-71-30012
This study was performed at the Steklov Mathematical Institute of the Russian Academy of Sciences and was supported by the Russian Science Foundation, project no. 19-71-30012.
Received: 25.02.2020
Revised: 25.02.2020
Accepted: 04.08.2020
English version:
Computational Mathematics and Mathematical Physics, 2020, Volume 60, Issue 12, Pages 1985–1989
DOI: https://doi.org/10.1134/S0965542520120106
Bibliographic databases:
Document Type: Article
UDC: 519.63
Language: Russian
Citation: V. V. Markov, V. N. Utesinov, “Difference scheme for the numerical solution of the Burgers equation”, Zh. Vychisl. Mat. Mat. Fiz., 60:12 (2020), 2050–2054; Comput. Math. Math. Phys., 60:12 (2020), 1985–1989
Citation in format AMSBIB
\Bibitem{MarUte20}
\by V.~V.~Markov, V.~N.~Utesinov
\paper Difference scheme for the numerical solution of the Burgers equation
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2020
\vol 60
\issue 12
\pages 2050--2054
\mathnet{http://mi.mathnet.ru/zvmmf10990}
\crossref{https://doi.org/10.31857/S0044466920120108}
\elib{https://elibrary.ru/item.asp?id=44154324}
\transl
\jour Comput. Math. Math. Phys.
\yr 2020
\vol 60
\issue 12
\pages 1985--1989
\crossref{https://doi.org/10.1134/S0965542520120106}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000604980400003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85098725322}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10990
  • https://www.mathnet.ru/eng/zvmmf/v60/i12/p2050
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025