Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2019, Volume 59, Number 11, Pages 1823–1835
DOI: https://doi.org/10.1134/S0044466919110152
(Mi zvmmf10976)
 

This article is cited in 3 scientific papers (total in 3 papers)

Application of matrix decompositions for matrix canonization

V. G. Volkov, D. N. Demyanov

Naberezhnye Chelny Institute, Branch of Kazan Federal University, Naberezhnye Chelny, 423812 Russia
Citations (3)
References:
Abstract: The problem of solving overdetermined, underdetermined, singular, or ill conditioned SLAEs using matrix canonization is considered. A modification of an existing canonization algorithm based on matrix decomposition is proposed. Formulas using LU decomposition, QR decomposition, LQ decomposition, or singular value decomposition, depending on the properties of the given matrix, are obtained. A method for evaluating the condition number of the canonization problem is proposed. It is based on computing the norm of the matrices obtained as a result of canonization; this method does not require the original matrix to be inverted. A general step-by-step matrix canonization algorithm is described and implemented in MATLAB. The implementation is tested on a set of 100 000 randomly generated matrices. The testing results confirmed the validity and efficiency of the proposed algorithm.
Key words: system of linear algebraic equations, matrix canonization, tablet method, singular value decomposition, QR decomposition, LQ decomposition, LU decomposition, condition number, nullspace, row space, column space.
Funding agency Grant number
Russian Foundation for Basic Research 17-08-00516_а
This work was supported by the Russian Federation for Basic Research, project no. 17-08-00516.
Received: 04.03.2019
Revised: 04.03.2019
Accepted: 08.07.2019
English version:
Computational Mathematics and Mathematical Physics, 2019, Volume 59, Issue 11, Pages 1759–1770
DOI: https://doi.org/10.1134/S0965542519110149
Bibliographic databases:
Document Type: Article
UDC: 519.61
Language: Russian
Citation: V. G. Volkov, D. N. Demyanov, “Application of matrix decompositions for matrix canonization”, Zh. Vychisl. Mat. Mat. Fiz., 59:11 (2019), 1823–1835; Comput. Math. Math. Phys., 59:11 (2019), 1759–1770
Citation in format AMSBIB
\Bibitem{VolDem19}
\by V.~G.~Volkov, D.~N.~Demyanov
\paper Application of matrix decompositions for matrix canonization
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2019
\vol 59
\issue 11
\pages 1823--1835
\mathnet{http://mi.mathnet.ru/zvmmf10976}
\crossref{https://doi.org/10.1134/S0044466919110152}
\elib{https://elibrary.ru/item.asp?id=41044789}
\transl
\jour Comput. Math. Math. Phys.
\yr 2019
\vol 59
\issue 11
\pages 1759--1770
\crossref{https://doi.org/10.1134/S0965542519110149}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000510740900001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85076235075}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10976
  • https://www.mathnet.ru/eng/zvmmf/v59/i11/p1823
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:364
    References:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024