Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2019, Volume 59, Number 8, Pages 1314–1330
DOI: https://doi.org/10.1134/S0044466919080179
(Mi zvmmf10934)
 

This article is cited in 3 scientific papers (total in 3 papers)

Methods for nonnegative matrix factorization based on low-rank cross approximations

E. E. Tyrtyshnikova, E. M. Shcherbakovab

a Institute of Numerical Mathematics, Russian Academy of Sciences, Moscow, 119333 Russia
b Faculty of Computational Mathematics and Cybernetics, Moscow State University, Moscow, 119991 Russia
Citations (3)
References:
Abstract: Available methods for nonnegative matrix factorization make use of all elements of the original $m\times n$ matrix, and their complexity is at least $O(mn),$ which makes them extremely resource-intensive in the case of large amounts of data. Accordingly, the following natural question arises: given the nonnegative rank of a matrix, can a nonnegative matrix factorization be constructed using some of its rows and columns? Methods for solving this problem are proposed for certain classes of matrices, namely, for nonnegative separable matrices (for which there exists a cone spanned by several columns of the original matrix that contains all its columns), for nonnegative separable matrices with perturbations, and for nonnegative matrices of rank 2. In practice, the number of operations and the amount of storage used by the proposed algorithms depend linearly on $m+n$ .
Key words: nonnegative matrix factorization, separable matrices, fast algorithms, cross approximation methods.
Funding agency Grant number
Russian Science Foundation 19-11-00338
This work was supported by the Russian Science Foundation, project no. 19-11-00338.
Received: 13.03.2019
Revised: 13.03.2019
Accepted: 10.04.2019
English version:
Computational Mathematics and Mathematical Physics, 2019, Volume 59, Issue 8, Pages 1251–1266
DOI: https://doi.org/10.1134/S0965542519080165
Bibliographic databases:
Document Type: Article
UDC: 519.61
Language: Russian
Citation: E. E. Tyrtyshnikov, E. M. Shcherbakova, “Methods for nonnegative matrix factorization based on low-rank cross approximations”, Zh. Vychisl. Mat. Mat. Fiz., 59:8 (2019), 1314–1330; Comput. Math. Math. Phys., 59:8 (2019), 1251–1266
Citation in format AMSBIB
\Bibitem{TyrShc19}
\by E.~E.~Tyrtyshnikov, E.~M.~Shcherbakova
\paper Methods for nonnegative matrix factorization based on low-rank cross approximations
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2019
\vol 59
\issue 8
\pages 1314--1330
\mathnet{http://mi.mathnet.ru/zvmmf10934}
\crossref{https://doi.org/10.1134/S0044466919080179}
\elib{https://elibrary.ru/item.asp?id=39149027}
\transl
\jour Comput. Math. Math. Phys.
\yr 2019
\vol 59
\issue 8
\pages 1251--1266
\crossref{https://doi.org/10.1134/S0965542519080165}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000487804000004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85073194572}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10934
  • https://www.mathnet.ru/eng/zvmmf/v59/i8/p1314
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:200
    References:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024