Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2019, Volume 59, Number 8, Pages 1299–1313
DOI: https://doi.org/10.1134/S0044466919080118
(Mi zvmmf10933)
 

This article is cited in 12 scientific papers (total in 12 papers)

A comparative analysis of efficiency of using the legendre polynomials and trigonometric functions for the numerical solution of Ito stochastic differential equations

D. F. Kuznetsov

Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 195251 Russia
Citations (12)
References:
Abstract: This paper is devoted to the comparative analysis of the efficiency of using the Legendre polynomials and trigonometric functions for the numerical solution of Ito stochastic differential equations under the method of approximating multiple Ito and Stratonovich stochastic integrals based on generalized multiple Fourier series. Using the multiple stochastic integrals of multiplicity 1–3 appearing in the Ito–Taylor expansion as an example, it is shown that their expansions obtained using multiple Fourier–Legendre series are significantly simpler and less computationally costly than their analogs obtained on the basis of multiple trigonometric Fourier series. The results obtained in this paper can be useful for constructing and implementing strong numerical methods for solving Ito stochastic differential equations with multidimensional nonlinear noise.
Key words: multiple Fourier series, Legendre polynomials, multiple stochastic integral, Ito stochastic integral, Stratonovich stochastic integral, Ito–Taylor expansion, Ito stochastic differential equation, numerical integration, mean square convergence.
Received: 15.01.2019
Revised: 15.01.2019
Accepted: 10.04.2019
English version:
Computational Mathematics and Mathematical Physics, 2019, Volume 59, Issue 8, Pages 1236–1250
DOI: https://doi.org/10.1134/S0965542519080116
Bibliographic databases:
Document Type: Article
UDC: 519.245
Language: Russian
Citation: D. F. Kuznetsov, “A comparative analysis of efficiency of using the legendre polynomials and trigonometric functions for the numerical solution of Ito stochastic differential equations”, Zh. Vychisl. Mat. Mat. Fiz., 59:8 (2019), 1299–1313; Comput. Math. Math. Phys., 59:8 (2019), 1236–1250
Citation in format AMSBIB
\Bibitem{Kuz19}
\by D.~F.~Kuznetsov
\paper A comparative analysis of efficiency of using the legendre polynomials and trigonometric functions for the numerical solution of Ito stochastic differential equations
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2019
\vol 59
\issue 8
\pages 1299--1313
\mathnet{http://mi.mathnet.ru/zvmmf10933}
\crossref{https://doi.org/10.1134/S0044466919080118}
\elib{https://elibrary.ru/item.asp?id=39149026}
\transl
\jour Comput. Math. Math. Phys.
\yr 2019
\vol 59
\issue 8
\pages 1236--1250
\crossref{https://doi.org/10.1134/S0965542519080116}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000487804000003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85073265585}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10933
  • https://www.mathnet.ru/eng/zvmmf/v59/i8/p1299
  • This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:176
    References:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024