Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2019, Volume 59, Number 7, Pages 1158–1173
DOI: https://doi.org/10.1134/S0044466919070135
(Mi zvmmf10923)
 

This article is cited in 4 scientific papers (total in 4 papers)

Integration of ordinary differential equations on Riemann surfaces with unbounded precision

V. P. Varin

KIAM, Moscow, 125047 Russia
Citations (4)
References:
Abstract: We consider analytical systems of ODE with a real or complex time. Integration of such ODE is equivalent to an analytical continuation of a solution along some path, which usually belongs to the real axis. The problems that may appear along this path are often caused by singularities of the solution that lie outside the real axis. It is possible to circumvent problematic parts of the path (including singularities) by going on the Riemann surface of the solution (i.e., in the complex domain). A natural way to realize this program is to use the method of Taylor expansions, which does not require a formal complexification of the system (i.e., a change of variables). We use two classical problems, i.e., the Restricted Three-Body problem, and Van der Pol equation, for demonstration of how Taylor expansions can be used for integration of ODE with an arbitrary precision. We obtained some new results in these problems.
Key words: analytical ODE, Taylor method, R3BP, Van der Pol equation, chaotic dynamics.
Received: 11.02.2019
Revised: 11.02.2019
Accepted: 11.03.2019
English version:
Computational Mathematics and Mathematical Physics, 2019, Volume 59, Issue 7, Pages 1105–1120
DOI: https://doi.org/10.1134/S0965542519070121
Bibliographic databases:
Document Type: Article
UDC: 519.624.3
Language: Russian
Citation: V. P. Varin, “Integration of ordinary differential equations on Riemann surfaces with unbounded precision”, Zh. Vychisl. Mat. Mat. Fiz., 59:7 (2019), 1158–1173; Comput. Math. Math. Phys., 59:7 (2019), 1105–1120
Citation in format AMSBIB
\Bibitem{Var19}
\by V.~P.~Varin
\paper Integration of ordinary differential equations on Riemann surfaces with unbounded precision
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2019
\vol 59
\issue 7
\pages 1158--1173
\mathnet{http://mi.mathnet.ru/zvmmf10923}
\crossref{https://doi.org/10.1134/S0044466919070135}
\elib{https://elibrary.ru/item.asp?id=38334244}
\transl
\jour Comput. Math. Math. Phys.
\yr 2019
\vol 59
\issue 7
\pages 1105--1120
\crossref{https://doi.org/10.1134/S0965542519070121}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000481793600006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85070783644}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10923
  • https://www.mathnet.ru/eng/zvmmf/v59/i7/p1158
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025