Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2019, Volume 59, Number 6, Pages 1037–1046
DOI: https://doi.org/10.1134/S004446691906005X
(Mi zvmmf10913)
 

This article is cited in 5 scientific papers (total in 5 papers)

The use of wall functions for simulating the turbulent thermal boundary layer

V. R. Efremova, V. V. Kurulinb, A. S. Kozelkovbc, A. A. Kurkinc, D. A. Utkinb

a Instrument Design Bureau, Tula, 300001 Russia
b Russian Federal Nuclear Center—All-Russia Institute of Experimental Physics, Sarov, Nizhegorodskaya oblast, 607189 Russia
c Nizhny Novgorod State Technical University, Nizhny Novgorod, 603950 Russia
Citations (5)
References:
Abstract: An important problem in the numerical simulation of turbulent heat exchange in fluids is accurate prediction of hydrodynamic characteristics of the flow in the boundary layer, which requires a fine grid near rigid surfaces. In applications, it is not always possible to have a fine grid and the use of a coarser grid results in significant loss of accuracy. A well-known approach to improving the accuracy of the numerical simulation of the boundary layer is the use of universal wall functions for computing the friction and thermal flux. In this paper, we consider the known wall functions for computing the thermal flux. The accuracy of these functions in problems of turbulent nonisothermal flow of fluid is studied. These are the flow in a plane channel, Couette flow, and flow along a heated plate. Each of these problems is solved on grids with various near wall resolutions. The results of solving these problems provide a basis for estimating the accuracy of the wall functions used for solving them. It is shown that the wall functions considered in this study yield nonmonotonic convergence of the results as the grid is refined.
Key words: numerical simulation, turbulence, boundary layer, turbulent heat exchange, wall function.
Funding agency Grant number
Russian Academy of Sciences - Federal Agency for Scientific Organizations 5.4568.2017/6.7
5.1246.2017/4.6
Ministry of Education and Science of the Russian Federation НШ-2685.2018.5
МД-4874.2018.9
Russian Foundation for Basic Research 16-01-00267_а
The results of were obtained within the state research program, project nos. 5.4568.2017/6.7 and 5.1246.2017/4.6. The work was also supported by the Presidential program of Support of Leading Scientific Schools, project no. NSh-2685.2018.5; by the Presidential program of support of young Russian doctors of science, project no. MD-4874.2018.9; and by the Russian Foundation for Basic Research, project no. 16-01-00267.
Received: 30.06.2018
Revised: 14.09.2018
Accepted: 08.02.2018
English version:
Computational Mathematics and Mathematical Physics, 2019, Volume 59, Issue 6, Pages 1006–1014
DOI: https://doi.org/10.1134/S0965542519060058
Bibliographic databases:
Document Type: Article
UDC: 532.5
Language: Russian
Citation: V. R. Efremov, V. V. Kurulin, A. S. Kozelkov, A. A. Kurkin, D. A. Utkin, “The use of wall functions for simulating the turbulent thermal boundary layer”, Zh. Vychisl. Mat. Mat. Fiz., 59:6 (2019), 1037–1046; Comput. Math. Math. Phys., 59:6 (2019), 1006–1014
Citation in format AMSBIB
\Bibitem{EfrKurKoz19}
\by V.~R.~Efremov, V.~V.~Kurulin, A.~S.~Kozelkov, A.~A.~Kurkin, D.~A.~Utkin
\paper The use of wall functions for simulating the turbulent thermal boundary layer
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2019
\vol 59
\issue 6
\pages 1037--1046
\mathnet{http://mi.mathnet.ru/zvmmf10913}
\crossref{https://doi.org/10.1134/S004446691906005X}
\elib{https://elibrary.ru/item.asp?id=37462920}
\transl
\jour Comput. Math. Math. Phys.
\yr 2019
\vol 59
\issue 6
\pages 1006--1014
\crossref{https://doi.org/10.1134/S0965542519060058}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000473489900013}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85068585740}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10913
  • https://www.mathnet.ru/eng/zvmmf/v59/i6/p1037
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:142
    References:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024