Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2019, Volume 59, Number 6, Pages 990–1006
DOI: https://doi.org/10.1134/S0044466919060127
(Mi zvmmf10910)
 

This article is cited in 5 scientific papers (total in 5 papers)

Numerical solution of a surface hypersingular integral equation by piecewise linear approximation and collocation methods

A. V. Setukha, A. V. Semenova

Lomonosov Moscow State University, Moscow, 119991 Russia
Citations (5)
References:
Abstract: A linear hypersingular integral equation is considered on a surface (closed or nonclosed with a boundary). This equation arises when the Neumann boundary value problem for the Laplace equation is solved by applying the method of boundary integral equations and the solution is represented in the form of a double-layer potential. For such an equation, a numerical scheme is constructed by triangulating the surface, approximating the solution by a piecewise linear function, and applying the collocation method at the vertices of the triangles approximating the surface. As a result, a system of linear equations is obtained that has coefficients expressed in terms of integrals over partition cells containing products of basis functions and a kernel with a strong singularity. Analytical formulas for finding these coefficients are derived. This requires the computation of the indicated integrals. For each integral, a neighborhood of the singular point is traversed so that the system of linear equations approximates the integrals of the unknown function at the collocation points in the sense of the Hadamard finite part. The method is tested on some examples.
Key words: numerical methods, integral equations, hypersingular integrals, boundary element method, potential theory.
Received: 30.05.2018
Revised: 23.01.2019
Accepted: 08.02.2018
English version:
Computational Mathematics and Mathematical Physics, 2019, Volume 59, Issue 6, Pages 942–957
DOI: https://doi.org/10.1134/S0965542519060125
Bibliographic databases:
Document Type: Article
UDC: 519.642
Language: Russian
Citation: A. V. Setukha, A. V. Semenova, “Numerical solution of a surface hypersingular integral equation by piecewise linear approximation and collocation methods”, Zh. Vychisl. Mat. Mat. Fiz., 59:6 (2019), 990–1006; Comput. Math. Math. Phys., 59:6 (2019), 942–957
Citation in format AMSBIB
\Bibitem{SetSem19}
\by A.~V.~Setukha, A.~V.~Semenova
\paper Numerical solution of a surface hypersingular integral equation by piecewise linear approximation and collocation methods
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2019
\vol 59
\issue 6
\pages 990--1006
\mathnet{http://mi.mathnet.ru/zvmmf10910}
\crossref{https://doi.org/10.1134/S0044466919060127}
\elib{https://elibrary.ru/item.asp?id=37462917}
\transl
\jour Comput. Math. Math. Phys.
\yr 2019
\vol 59
\issue 6
\pages 942--957
\crossref{https://doi.org/10.1134/S0965542519060125}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000473489900009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85068585177}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10910
  • https://www.mathnet.ru/eng/zvmmf/v59/i6/p990
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024