Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2019, Volume 59, Number 5, Pages 731–738
DOI: https://doi.org/10.1134/S0044466919050041
(Mi zvmmf10887)
 

This article is cited in 1 scientific paper (total in 1 paper)

On implementation of non-polynomial spline approximation

O. V. Belyakova

Immanuel Kant Baltic Federal University, Kaliningrad, 236041 Russia
Citations (1)
References:
Abstract: In this paper, different variants of processing of number flows using Lagrange and Hermite non-polynomial splines are studied. The splines are constructed from approximate relations including a generating vector function with components of different character, including non-polynomial. Approximations by first-order Lagrange and third-order Hermite splines are considered. The efficiency of the approximations constructed is demonstrated on the examples of flows of the values of a function and flows of the values of a function and its derivative. The advantages of the splines considered are the simplicity of construction, maximum smoothness, interpolation and approximation properties, and the accuracy on a priori given functions (on the components of the generating vector function).
Key words: non-polynomial splines, approximation, approximation error.
Received: 02.10.2018
Revised: 21.12.2018
Accepted: 23.12.2018
English version:
Computational Mathematics and Mathematical Physics, 2019, Volume 59, Issue 5, Pages 689–695
DOI: https://doi.org/10.1134/S096554251905004X
Bibliographic databases:
Document Type: Article
UDC: 519.65
Language: Russian
Citation: O. V. Belyakova, “On implementation of non-polynomial spline approximation”, Zh. Vychisl. Mat. Mat. Fiz., 59:5 (2019), 731–738; Comput. Math. Math. Phys., 59:5 (2019), 689–695
Citation in format AMSBIB
\Bibitem{Bel19}
\by O.~V.~Belyakova
\paper On implementation of non-polynomial spline approximation
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2019
\vol 59
\issue 5
\pages 731--738
\mathnet{http://mi.mathnet.ru/zvmmf10887}
\crossref{https://doi.org/10.1134/S0044466919050041}
\elib{https://elibrary.ru/item.asp?id=37310670}
\transl
\jour Comput. Math. Math. Phys.
\yr 2019
\vol 59
\issue 5
\pages 689--695
\crossref{https://doi.org/10.1134/S096554251905004X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000472151500001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85067523158}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10887
  • https://www.mathnet.ru/eng/zvmmf/v59/i5/p731
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:116
    References:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024