Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2019, Volume 59, Number 4, Pages 611–620
DOI: https://doi.org/10.1134/S0044466919040100
(Mi zvmmf10879)
 

This article is cited in 23 scientific papers (total in 23 papers)

Asymptotic stability of a stationary solution of a multidimensional reaction-diffusion equation with a discontinuous source

N. T. Levashova, N. N. Nefedov, A. O. Orlov

Lomonosov Moscow State University, Moscow, 119992 Russia
Citations (23)
References:
Abstract: A two-dimensional reaction-diffusion equation in a medium with discontinuous characteristics is considered; the existence, local uniqueness, and asymptotic stability of its stationary solution, which has a large gradient at the interface, is proved. This paper continues the authors' works concerning the existence and stability of solutions with internal transition layers of boundary value problems with discontinuous terms to multidimensional problems. The proof of the existence and stability of a solution is based on the method of upper and lower solutions. The methods of analysis proposed in this paper can be generalized to equations of arbitrary dimension of the spatial variables, as well as to more complex problems, e.g., problems for systems of equations. The results of this work can be used to develop numerical algorithms for solving stiff problems with discontinuous coefficients.
Key words: reaction–diffusion problem, internal layers, asymptotics of solution, Lyapunov asymptotic stability, comparison principle.
Funding agency Grant number
Russian Science Foundation 18-11-00042
This work was supported by the Russian Science Foundation, project no. 18-11-00042.
Received: 19.09.2018
Revised: 14.11.2018
Accepted: 14.11.2018
English version:
Computational Mathematics and Mathematical Physics, 2019, Volume 59, Issue 4, Pages 573–582
DOI: https://doi.org/10.1134/S0965542519040109
Bibliographic databases:
Document Type: Article
UDC: 517.958
Language: Russian
Citation: N. T. Levashova, N. N. Nefedov, A. O. Orlov, “Asymptotic stability of a stationary solution of a multidimensional reaction-diffusion equation with a discontinuous source”, Zh. Vychisl. Mat. Mat. Fiz., 59:4 (2019), 611–620; Comput. Math. Math. Phys., 59:4 (2019), 573–582
Citation in format AMSBIB
\Bibitem{LevNefOrl19}
\by N.~T.~Levashova, N.~N.~Nefedov, A.~O.~Orlov
\paper Asymptotic stability of a stationary solution of a multidimensional reaction-diffusion equation with a discontinuous source
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2019
\vol 59
\issue 4
\pages 611--620
\mathnet{http://mi.mathnet.ru/zvmmf10879}
\crossref{https://doi.org/10.1134/S0044466919040100}
\elib{https://elibrary.ru/item.asp?id=37207500}
\transl
\jour Comput. Math. Math. Phys.
\yr 2019
\vol 59
\issue 4
\pages 573--582
\crossref{https://doi.org/10.1134/S0965542519040109}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000472036700006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85067474593}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10879
  • https://www.mathnet.ru/eng/zvmmf/v59/i4/p611
  • This publication is cited in the following 23 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:174
    References:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024