Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2018, Volume 58, Number 11, paper published in the English version journal (Mi zvmmf10873)  

This article is cited in 5 scientific papers (total in 5 papers)

Papers published in the English version of the journal

Soliton solutions and conservation laws for an inhomogeneous fourth-order nonlinear Schrödinger equation

Pan Wanga, Feng-Hua Qib, Jian-Rong Yanga

a School of Management, Beijing Sport University, Information Road Haidian District, Beijing, China
b School of Information, Beijing Wuzi University, Beijing, China
Citations (5)
References:
Abstract: In this paper, we investigate an inhomogeneous fourth-order nonlinear Schrödinger (NLS) equation, generated by deforming the inhomogeneous Heisenberg ferromagnetic spin system through the space curve formalism and using the prolongation structure theory. Via the introduction of the auxiliary function, the bilinear form, one-soliton and two-soliton solutions for the inhomogeneous fourth-order NLS equation are obtained. Infinitely many conservation laws for the inhomogeneous fourth-order NLS equation are derived on the basis of the Ablowitz–Kaup–Newell–Segur system. Propagation and interactions of solitons are investigated analytically and graphically. The effect of the parameters $\mu_1$, $\mu_2$, $\nu_1$ and $\nu_2$ on the soliton velocity are presented. Through the asymptotic analysis, we have proved that the interaction of two solitons is not elastic.
Key words: inhomogeneous generalized fourth-order nonlinear Schrödinger, equation infinitely many conversation laws, auxiliary function, Hirota method, symbolic computation.
Received: 17.10.2017
English version:
Computational Mathematics and Mathematical Physics, 2018, Volume 58, Issue 11, Pages 1856–1864
DOI: https://doi.org/10.1134/S0965542518110106
Bibliographic databases:
Document Type: Article
Language: English
Citation: Pan Wang, Feng-Hua Qi, Jian-Rong Yang, “Soliton solutions and conservation laws for an inhomogeneous fourth-order nonlinear Schrödinger equation”, Comput. Math. Math. Phys., 58:11 (2018), 1856–1864
Citation in format AMSBIB
\Bibitem{WanQiYan18}
\by Pan~Wang, Feng-Hua~Qi, Jian-Rong~Yang
\paper Soliton solutions and conservation laws for an inhomogeneous fourth-order nonlinear Schr\"odinger equation
\jour Comput. Math. Math. Phys.
\yr 2018
\vol 58
\issue 11
\pages 1856--1864
\mathnet{http://mi.mathnet.ru/zvmmf10873}
\crossref{https://doi.org/10.1134/S0965542518110106}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000452301900014}
\elib{https://elibrary.ru/item.asp?id=38893575}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85058858611}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10873
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:263
    References:36
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024