Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2018, Volume 58, Number 12, paper published in the English version journal (Mi zvmmf10871)  

This article is cited in 4 scientific papers (total in 4 papers)

Papers published in the English version of the journal

Convergence analysis of the finite difference ADI scheme for variable coefficient parabolic problems with nonzero Dirichlet boundary conditions

B. Bialeckia, M. Dryjab, R. I. Fernandesc

a Department of Applied Mathematics and Statistics, Colorado School of Mines, Golden, USA
b Department of Informatics, Vistula University, Warsaw, Poland
c Department of Applied Mathematics and Sciences, Petroleum Institute, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
Citations (4)
References:
Abstract: Since the invention by Peaceman and Rachford, more than 60 years ago, of the well celebrated ADI finite difference scheme for parabolic initial-boundary problems on rectangular regions, many papers have been concerned with prescribing the boundary values for the intermediate approximations at half time levels in the case of nonzero Dirichlet boundary conditions. In the present paper, for variable coefficient parabolic problems and time-stepsize sufficiently small, we prove second order accuracy in the discrete $L^2$ norm of the ADI finite difference scheme in which the intermediate approximations do not involve the so called “perturbation term”. As a byproduct of our stability analysis we also show that, for variable coefficients and time-stepsize sufficiently small, the ADI scheme with the perturbation term converges with order two in the discrete $H^1$ norm. Our convergence results generalize previous results obtained for the heat equation.
Key words: parabolic equation, finite difference, ADI, convergence analysis.
Received: 16.05.2017
Revised: 28.03.2018
English version:
Computational Mathematics and Mathematical Physics, 2018, Volume 58, Issue 12, Pages 2086–2108
DOI: https://doi.org/10.1134/S0965542519010032
Bibliographic databases:
Document Type: Article
Language: English
Citation: B. Bialecki, M. Dryja, R. I. Fernandes, “Convergence analysis of the finite difference ADI scheme for variable coefficient parabolic problems with nonzero Dirichlet boundary conditions”, Comput. Math. Math. Phys., 58:12 (2018), 2086–2108
Citation in format AMSBIB
\Bibitem{BiaDryFer18}
\by B.~Bialecki, M.~Dryja, R.~I.~Fernandes
\paper Convergence analysis of the finite difference ADI scheme for variable coefficient parabolic problems with nonzero Dirichlet boundary conditions
\jour Comput. Math. Math. Phys.
\yr 2018
\vol 58
\issue 12
\pages 2086--2108
\mathnet{http://mi.mathnet.ru/zvmmf10871}
\crossref{https://doi.org/10.1134/S0965542519010032}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000458237300016}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85062072560}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10871
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024