Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2019, Volume 59, Number 3, Pages 481–493
DOI: https://doi.org/10.1134/S0044466919030153
(Mi zvmmf10865)
 

This article is cited in 15 scientific papers (total in 15 papers)

Conditions for $L^2$-dissipativity of linearized explicit difference schemes with regularization for $\mathrm{1D}$ barotropic gas dynamics equations

A. A. Zlotnik, T. A. Lomonosov

National Research University Higher School of Economics, Moscow, 101000 Russia
Citations (15)
References:
Abstract: Explicit two-level in time and symmetric in space difference schemes constructed by approximating the 1D barotropic quasi-gas-/quasi-hydrodynamic systems of equations are studied. The schemes are linearized about a constant solution with a nonzero velocity, and, for them, necessary and sufficient conditions for the ${{L}^{2}}$ -dissipativity of solutions to the Cauchy problem are derived depending on the Mach number. These conditions differ from one another by at most twice. The results substantially develop the ones known for the linearized Lax–Wendroff scheme. Numerical experiments are performed to analyze the applicability of the found conditions in the nonlinear formulation to several schemes for different Mach numbers.
Key words: equations of one-dimensional barotropic gas dynamics, quasi-gasdynamic system of equations, explicit two-level difference schemes, stability, $L^2$-dissipativity.
Funding agency Grant number
Russian Foundation for Basic Research 19-01-00262
18-01-00587_а
This work was supported by the Russian Foundation for Basic Research, project nos. 19-01-00262 and 18-01-00587.
Received: 12.06.2018
English version:
Computational Mathematics and Mathematical Physics, 2019, Volume 59, Issue 3, Pages 452–464
DOI: https://doi.org/10.1134/S0965542519030151
Bibliographic databases:
Document Type: Article
UDC: 519.633
Language: Russian
Citation: A. A. Zlotnik, T. A. Lomonosov, “Conditions for $L^2$-dissipativity of linearized explicit difference schemes with regularization for $\mathrm{1D}$ barotropic gas dynamics equations”, Zh. Vychisl. Mat. Mat. Fiz., 59:3 (2019), 481–493; Comput. Math. Math. Phys., 59:3 (2019), 452–464
Citation in format AMSBIB
\Bibitem{ZloLom19}
\by A.~A.~Zlotnik, T.~A.~Lomonosov
\paper Conditions for $L^2$-dissipativity of linearized explicit difference schemes with regularization for $\mathrm{1D}$ barotropic gas dynamics equations
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2019
\vol 59
\issue 3
\pages 481--493
\mathnet{http://mi.mathnet.ru/zvmmf10865}
\crossref{https://doi.org/10.1134/S0044466919030153}
\elib{https://elibrary.ru/item.asp?id=37109576}
\transl
\jour Comput. Math. Math. Phys.
\yr 2019
\vol 59
\issue 3
\pages 452--464
\crossref{https://doi.org/10.1134/S0965542519030151}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000469870600008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85061576792}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10865
  • https://www.mathnet.ru/eng/zvmmf/v59/i3/p481
  • This publication is cited in the following 15 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:129
    References:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024