Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2019, Volume 59, Number 3, Pages 465–480
DOI: https://doi.org/10.1134/S0044466919030086
(Mi zvmmf10864)
 

Weight minimization for a thin straight wing with a divergence speed constraint

V. Yu. Goncharov, L. A. Muravei

Moscow Aviation Institute (National Research University), Moscow, 125993 Russia
References:
Abstract: For a thin straight wing satisfying a given constraint on the divergence speed (i.e., the speed above which the twist of the wing leads to its failure), the problem of determining an optimal skin thickness distribution that minimizes the skin mass is considered. The mathematical formulation of the problem is as follows: minimize a linear functional over a set of essentially bounded measurable functions for which the smallest eigenvalue of a Sturm–Liouville problem is no less than a preset value. It is proved that this problem has a unique solution. Since only piecewise smooth thickness distributions satisfy the requirements for applications, the regularity of the optimal solution is analyzed. It turns out that the optimal solution is a Lipschitz continuous function. Additionally, it is shown that the solution depends continuously on a parameter determining the lowest possible divergence speed, i.e., the considered problem is well-posed in the sense of Hadamard. Finally, an iteration method for constructing minimizing sequences converging to an optimal solution in Hölder spaces is proposed and numerical results are presented and discussed.
Key words: optimal design, thin straight wing, regularity of solutions, optimization of eigenvalues, weight minimization, inverse problem, well-posed problem, wing divergence, saddle point, iteration method.
Funding agency Grant number
Russian Foundation for Basic Research 16-01-00425_а
This work was supported by the Russian Foundation for Basic Research, project no. 16-01-00425_a.
Received: 03.07.2018
English version:
Computational Mathematics and Mathematical Physics, 2019, Volume 59, Issue 3, Pages 437–451
DOI: https://doi.org/10.1134/S0965542519030084
Bibliographic databases:
Document Type: Article
UDC: 519.633
Language: Russian
Citation: V. Yu. Goncharov, L. A. Muravei, “Weight minimization for a thin straight wing with a divergence speed constraint”, Zh. Vychisl. Mat. Mat. Fiz., 59:3 (2019), 465–480; Comput. Math. Math. Phys., 59:3 (2019), 437–451
Citation in format AMSBIB
\Bibitem{GonMur19}
\by V.~Yu.~Goncharov, L.~A.~Muravei
\paper Weight minimization for a thin straight wing with a divergence speed constraint
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2019
\vol 59
\issue 3
\pages 465--480
\mathnet{http://mi.mathnet.ru/zvmmf10864}
\crossref{https://doi.org/10.1134/S0044466919030086}
\elib{https://elibrary.ru/item.asp?id=37109575}
\transl
\jour Comput. Math. Math. Phys.
\yr 2019
\vol 59
\issue 3
\pages 437--451
\crossref{https://doi.org/10.1134/S0965542519030084}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000469870600007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85066330252}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10864
  • https://www.mathnet.ru/eng/zvmmf/v59/i3/p465
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:126
    References:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024