Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2019, Volume 59, Number 3, Pages 441–464
DOI: https://doi.org/10.1134/S0044466919030141
(Mi zvmmf10863)
 

This article is cited in 3 scientific papers (total in 3 papers)

A $K{{P}_{1}}$ scheme for acceleration of inner iterations for the transport equation in 3D geometry consistent with nodal schemes: basic equations and numerical results

A. M. Voloshchenko

Federal Research Center Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Moscow, 125047 Russia
Citations (3)
References:
Abstract: A $K{{P}_{1}}$ scheme for accelerating the convergence of inner iterations for the transport equation in three-dimensional $r,\vartheta ,z$ geometry is constructed. This scheme is consistent with the nodal LD (Linear Discontinues) and LB (Linear Best) schemes of the third and fourth orders of accuracy with respect to the spatial variables. To solve the ${{P}_{1}}$ system for acceleration corrections, an algorithm is proposed based on the cyclic splitting method (SM) combined with the tridiagonal matrix algorithm to solve auxiliary systems of two-point equations. A modification of the algorithm for three-dimensional $x,y,z$ geometry is considered. Numerical examples of using the $K{{P}_{1}}$ scheme to solve typical radiation transport problems in three-dimensional geometries are given, including problems with a significant role of scattering anisotropy and highly heterogeneous problems with dominant scattering.
Key words: $K{{P}_{1}}$ acceleration scheme, transport equation, nodal schemes.
Received: 17.01.2018
Revised: 10.05.2018
English version:
Computational Mathematics and Mathematical Physics, 2019, Volume 59, Issue 3, Pages 414–436
DOI: https://doi.org/10.1134/S096554251903014X
Bibliographic databases:
Document Type: Article
UDC: 519.635
Language: Russian
Citation: A. M. Voloshchenko, “A $K{{P}_{1}}$ scheme for acceleration of inner iterations for the transport equation in 3D geometry consistent with nodal schemes: basic equations and numerical results”, Zh. Vychisl. Mat. Mat. Fiz., 59:3 (2019), 441–464; Comput. Math. Math. Phys., 59:3 (2019), 414–436
Citation in format AMSBIB
\Bibitem{Vol19}
\by A.~M.~Voloshchenko
\paper A $K{{P}_{1}}$ scheme for acceleration of inner iterations for the transport equation in 3D geometry consistent with nodal schemes: basic equations and numerical results
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2019
\vol 59
\issue 3
\pages 441--464
\mathnet{http://mi.mathnet.ru/zvmmf10863}
\crossref{https://doi.org/10.1134/S0044466919030141}
\elib{https://elibrary.ru/item.asp?id=37109574}
\transl
\jour Comput. Math. Math. Phys.
\yr 2019
\vol 59
\issue 3
\pages 414--436
\crossref{https://doi.org/10.1134/S096554251903014X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000469870600006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85066321604}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10863
  • https://www.mathnet.ru/eng/zvmmf/v59/i3/p441
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:117
    References:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024