Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2019, Volume 59, Number 3, Pages 391–408
DOI: https://doi.org/10.1134/S0044466919030098
(Mi zvmmf10860)
 

This article is cited in 5 scientific papers (total in 5 papers)

An approximate method for determining the harmonic barycentric coordinates for arbitrary polygons

A. S. Il'inskiia, I. S. Polyanskiiab

a Lomonosov Moscow State University
b Academy of the Federal Guard Service of the Russian Federation, Orel, 302015 Russia
Citations (5)
References:
Abstract: A relation for finding the harmonic barycentric coordinates for an arbitrary polygon is obtained. The solution is approximate analytical. In the proposed statement, the harmonic barycentric coordinates are determined in terms of the logarithmic potential of a double layer by solving the Dirichlet problem by the Fredholm method. The approximate nature of the solution is determined by the expansion of the kernel of the integral Fredholm equation of the second kind for the unknown density of potential on the boundary of the domain in the orthogonal Legendre polynomials and the expansion of Green's function; these expansions are used for the calculation of the potential. An estimate of convergence rate and the error of the solution is obtained. The approximate solutions obtained by the proposed method are compared with the known exact solutions of some benchmark problems.
Key words: harmonic barycentric coordinates, arbitrary polygon, Laplace equation, logarithmic potential of a double layer, Fredholm equation, Legendre polynomials.
Received: 24.05.2018
English version:
Computational Mathematics and Mathematical Physics, 2019, Volume 59, Issue 3, Pages 366–383
DOI: https://doi.org/10.1134/S0965542519030096
Bibliographic databases:
Document Type: Article
UDC: 519.632
Language: Russian
Citation: A. S. Il'inskii, I. S. Polyanskii, “An approximate method for determining the harmonic barycentric coordinates for arbitrary polygons”, Zh. Vychisl. Mat. Mat. Fiz., 59:3 (2019), 391–408; Comput. Math. Math. Phys., 59:3 (2019), 366–383
Citation in format AMSBIB
\Bibitem{IliPol19}
\by A.~S.~Il'inskii, I.~S.~Polyanskii
\paper An approximate method for determining the harmonic barycentric coordinates for arbitrary polygons
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2019
\vol 59
\issue 3
\pages 391--408
\mathnet{http://mi.mathnet.ru/zvmmf10860}
\crossref{https://doi.org/10.1134/S0044466919030098}
\elib{https://elibrary.ru/item.asp?id=37109571}
\transl
\jour Comput. Math. Math. Phys.
\yr 2019
\vol 59
\issue 3
\pages 366--383
\crossref{https://doi.org/10.1134/S0965542519030096}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000469870600003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85066330946}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10860
  • https://www.mathnet.ru/eng/zvmmf/v59/i3/p391
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:223
    References:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024