Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2019, Volume 59, Number 3, Pages 367–379
DOI: https://doi.org/10.1134/S0044466919030049
(Mi zvmmf10858)
 

This article is cited in 8 scientific papers (total in 8 papers)

Approximation of a function and its derivatives on the basis of cubic spline interpolation in the presence of a boundary layer

I. A. Blatova, A. I. Zadorinb, E. V. Kitaevac

a Povolzhskiy State University of Telecommunications and Informatics, Samara, 443010 Russia
b Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090 Russia
c Samara University, Samara, 443086 Russia
Citations (8)
References:
Abstract: The problem of approximate calculation of the derivatives of functions with large gradients in the region of an exponential boundary layer is considered. It is known that the application of classical formulas of numerical differentiation to functions with large gradients in a boundary layer leads to significant errors. It is proposed to interpolate such functions by cubic splines on a Shishkin grid condensed in the boundary layer. The derivatives of a function defined on the grid nodes are found by differentiating the cubic spline. Using this approach, estimates of the relative error in the boundary layer and the absolute error outside of the boundary layer are obtained. These estimates are uniform in a small parameter. The results of computational experiments are discussed.
Key words: function of one variable, exponential boundary layer, Shishkin grid, cubic spline, approximation of derivatives, error estimate.
Funding agency Grant number
Russian Foundation for Basic Research 16-01-00727_а
Siberian Branch of Russian Academy of Sciences 0314-2019-0009
This work was supported in part by the Russian Foundation for Basic Research, project no. 16-01-00727.
Received: 04.07.2018
English version:
Computational Mathematics and Mathematical Physics, 2019, Volume 59, Issue 3, Pages 343–354
DOI: https://doi.org/10.1134/S0965542519030047
Bibliographic databases:
Document Type: Article
UDC: 519.651
Language: Russian
Citation: I. A. Blatov, A. I. Zadorin, E. V. Kitaeva, “Approximation of a function and its derivatives on the basis of cubic spline interpolation in the presence of a boundary layer”, Zh. Vychisl. Mat. Mat. Fiz., 59:3 (2019), 367–379; Comput. Math. Math. Phys., 59:3 (2019), 343–354
Citation in format AMSBIB
\Bibitem{BlaZadKit19}
\by I.~A.~Blatov, A.~I.~Zadorin, E.~V.~Kitaeva
\paper Approximation of a function and its derivatives on the basis of cubic spline interpolation in the presence of a boundary layer
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2019
\vol 59
\issue 3
\pages 367--379
\mathnet{http://mi.mathnet.ru/zvmmf10858}
\crossref{https://doi.org/10.1134/S0044466919030049}
\elib{https://elibrary.ru/item.asp?id=37109569}
\transl
\jour Comput. Math. Math. Phys.
\yr 2019
\vol 59
\issue 3
\pages 343--354
\crossref{https://doi.org/10.1134/S0965542519030047}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000469870600001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85066472488}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10858
  • https://www.mathnet.ru/eng/zvmmf/v59/i3/p367
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024