Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2018, Volume 58, Number 11, Pages 1804–1814
DOI: https://doi.org/10.31857/S004446690003534-8
(Mi zvmmf10853)
 

This article is cited in 2 scientific papers (total in 2 papers)

Asymptotics of the solution of a bisingular optimal boundary control problem in a bounded domain

A. R. Danilin

Krasovskii Institute of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russia
Citations (2)
References:
Abstract: A bisingular problem of optimal boundary control for solutions of an elliptic equation in a bounded domain with a smooth boundary is considered. The coefficient of the Laplacian is assumed to be small, and integral constraints are imposed on the control. A complete asymptotic expansion in powers of the small parameter is obtained for the solution of the problem.
Key words: singular problems, optimal control, boundary value problems for systems of partial differential equations, asymptotic expansions.
Received: 17.10.2017
English version:
Computational Mathematics and Mathematical Physics, 2018, Volume 58, Issue 11, Pages 1737–1747
DOI: https://doi.org/10.1134/S0965542518110040
Bibliographic databases:
Document Type: Article
UDC: 517.977
Language: Russian
Citation: A. R. Danilin, “Asymptotics of the solution of a bisingular optimal boundary control problem in a bounded domain”, Zh. Vychisl. Mat. Mat. Fiz., 58:11 (2018), 1804–1814; Comput. Math. Math. Phys., 58:11 (2018), 1737–1747
Citation in format AMSBIB
\Bibitem{Dan18}
\by A.~R.~Danilin
\paper Asymptotics of the solution of a bisingular optimal boundary control problem in a bounded domain
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2018
\vol 58
\issue 11
\pages 1804--1814
\mathnet{http://mi.mathnet.ru/zvmmf10853}
\crossref{https://doi.org/10.31857/S004446690003534-8}
\elib{https://elibrary.ru/item.asp?id=38643121}
\transl
\jour Comput. Math. Math. Phys.
\yr 2018
\vol 58
\issue 11
\pages 1737--1747
\crossref{https://doi.org/10.1134/S0965542518110040}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000452301900005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85058859893}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10853
  • https://www.mathnet.ru/eng/zvmmf/v58/i11/p1804
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024