Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2019, Volume 59, Number 2, Pages 325–333
DOI: https://doi.org/10.1134/S0044466919020066
(Mi zvmmf10839)
 

This article is cited in 2 scientific papers (total in 2 papers)

On the calculation of the interaction potential in multiatomic systems

O. A. Gorkushaa, V. G. Zavodinskób

a Khabarovsk Division of the Institute of Applied Mathematics, Far East Branch, Russian Academy of Sciences, Khabarovsk, 680000 Russia
b Institute of Material Science, Far East Branch, Russian Academy of Sciences, Khabarovsk, 680042 Russia
Citations (2)
References:
Abstract: A numerical method for finding the potential of a multiatomic system in the real space is proposed. A distinctive feature of this method is the decomposition of the electron density $\rho$ and the potential $\varphi $ into two parts $\rho={{\rho }_{0}}+\hat{\rho }$ and $\varphi = {{\varphi }_{0}}+\hat {\varphi }$, where ${{\rho }_{0}}$ is the sum of the spherical atom densities and the potential ${{\varphi }_{0}}$ is generated by the density ${{\rho }_{0}}$. The potential $\hat\varphi$ is found by solving Poisson's equation. The boundary conditions are obtained by expanding the reciprocal distance between two points in a series in Legendre polynomials. To improve the accuracy of the method, the computation domain is decomposed into Voronoi polyhedra, and asymptotic estimates of iterations are used when the characteristic function is replaced by its smooth approximations. Poisson's equation is numerically solved using the two-grid method and the Fourier transform. An estimate $O({{h}^{{\gamma-1}}})$, where $h$ is the grid size and $\gamma$ is a fixed number greater than one, is obtained for the accuracy of the method. The error of the method is analyzed using a two-atom problem as an example.
Key words: Poisson's equation, electrostatic potential, Voronoi polyhedra, multipole expansion, twogrid method.
Received: 29.04.2018
Revised: 01.06.2018
English version:
Computational Mathematics and Mathematical Physics, 2019, Volume 59, Issue 2, Pages 313–321
DOI: https://doi.org/10.1134/S0965542519020064
Bibliographic databases:
Document Type: Article
UDC: 519.6:531.32
Language: Russian
Citation: O. A. Gorkusha, V. G. Zavodinskó, “On the calculation of the interaction potential in multiatomic systems”, Zh. Vychisl. Mat. Mat. Fiz., 59:2 (2019), 325–333; Comput. Math. Math. Phys., 59:2 (2019), 313–321
Citation in format AMSBIB
\Bibitem{GorZav19}
\by O.~A.~Gorkusha, V.~G.~Zavodinskó
\paper On the calculation of the interaction potential in multiatomic systems
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2019
\vol 59
\issue 2
\pages 325--333
\mathnet{http://mi.mathnet.ru/zvmmf10839}
\crossref{https://doi.org/10.1134/S0044466919020066}
\elib{https://elibrary.ru/item.asp?id=36962818}
\transl
\jour Comput. Math. Math. Phys.
\yr 2019
\vol 59
\issue 2
\pages 313--321
\crossref{https://doi.org/10.1134/S0965542519020064}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000468087400013}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85066022852}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10839
  • https://www.mathnet.ru/eng/zvmmf/v59/i2/p325
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Æóðíàë âû÷èñëèòåëüíîé ìàòåìàòèêè è ìàòåìàòè÷åñêîé ôèçèêè Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:152
    References:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024