Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2019, Volume 59, Number 2, Pages 203–210
DOI: https://doi.org/10.1134/S0044466919020108
(Mi zvmmf10828)
 

This article is cited in 1 scientific paper (total in 1 paper)

A new algorithm for a posteriori error estimation for approximate solutions of linear ill-posed problems

A. S. Leonov

National Research Nuclear University "MEPhI", Moscow, 115409 Russia
Citations (1)
References:
Abstract: A new algorithm for a posteriori estimation of the error in solutions to linear operator equations of the first kind in a Hilbert space is proposed and justified. The algorithm reduces the variational problem of a posteriori error estimation to two special problems of maximizing smooth functionals under smooth constraints. A finite-dimensional version of the algorithm is considered. The results of a numerical experiment concerning a posteriori error estimation for a typical inverse problem are presented. It is shown experimentally that the computation time required by the algorithm is less, on average, by a factor of 1.4 than in earlier proposed methods.
Key words: linear ill-posed problems, regularizing algorithms, a posteriori error estimate.
Funding agency Grant number
Russian Foundation for Basic Research 17-01-00159
17-51-53002
Ministry of Education and Science of the Russian Federation 02.а03.21.0005
This work was supported by the Russian Foundation for Basic Research (project nos. 17-01-00159-a and 17-51-53002-GFEN-a) and by the Program of Competitiveness Increase for the National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) (contract no. 02.a03.21.0005, August 27, 2013).
Received: 12.04.2018
English version:
Computational Mathematics and Mathematical Physics, 2019, Volume 59, Issue 2, Pages 193–200
DOI: https://doi.org/10.1134/S0965542519020106
Bibliographic databases:
Document Type: Article
UDC: 517.977
Language: Russian
Citation: A. S. Leonov, “A new algorithm for a posteriori error estimation for approximate solutions of linear ill-posed problems”, Zh. Vychisl. Mat. Mat. Fiz., 59:2 (2019), 203–210; Comput. Math. Math. Phys., 59:2 (2019), 193–200
Citation in format AMSBIB
\Bibitem{Leo19}
\by A.~S.~Leonov
\paper A new algorithm for a posteriori error estimation for approximate solutions of linear ill-posed problems
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2019
\vol 59
\issue 2
\pages 203--210
\mathnet{http://mi.mathnet.ru/zvmmf10828}
\crossref{https://doi.org/10.1134/S0044466919020108}
\elib{https://elibrary.ru/item.asp?id=36962804}
\transl
\jour Comput. Math. Math. Phys.
\yr 2019
\vol 59
\issue 2
\pages 193--200
\crossref{https://doi.org/10.1134/S0965542519020106}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000468087400002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85066040407}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10828
  • https://www.mathnet.ru/eng/zvmmf/v59/i2/p203
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:158
    References:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024