Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2019, Volume 59, Number 2, Pages 185–202
DOI: https://doi.org/10.1134/S0044466919020054
(Mi zvmmf10827)
 

This article is cited in 20 scientific papers (total in 20 papers)

Numerical analysis of initial-boundary value problem for a Sobolev-type equation with a fractional-order time derivative

M. KH. Beshtokov

Institute of Applied Mathematics and Automation, Kabardino-Balkarian Scientific Center, Russian Academy of Sciences, Nalchik, Kabardino-Balkarian Republic, 360004 Russia
Citations (20)
References:
Abstract: The paper is concerned with initial-boundary value problems for a Sobolev-type equation with a Gerasimov–Caputo fractional derivative with memory effect. A priori estimates of the solutions are obtained in the differential and difference forms, which imply their uniqueness and stability with respect to the initial data and the right-hand side, as well as the convergence of the solution of the difference problem to the solution of the differential problem.
Key words: boundary value problems, a priori estimate, Sobolev-type equation, fractional-order differential equation, Gerasimov–Caputo fractional derivative, equations with memory.
Received: 13.01.2018
Revised: 18.08.2018
English version:
Computational Mathematics and Mathematical Physics, 2019, Volume 59, Issue 2, Pages 175–192
DOI: https://doi.org/10.1134/S0965542519020052
Bibliographic databases:
Document Type: Article
UDC: 519.63
Language: Russian
Citation: M. KH. Beshtokov, “Numerical analysis of initial-boundary value problem for a Sobolev-type equation with a fractional-order time derivative”, Zh. Vychisl. Mat. Mat. Fiz., 59:2 (2019), 185–202; Comput. Math. Math. Phys., 59:2 (2019), 175–192
Citation in format AMSBIB
\Bibitem{Bes19}
\by M.~KH.~Beshtokov
\paper Numerical analysis of initial-boundary value problem for a Sobolev-type equation with a fractional-order time derivative
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2019
\vol 59
\issue 2
\pages 185--202
\mathnet{http://mi.mathnet.ru/zvmmf10827}
\crossref{https://doi.org/10.1134/S0044466919020054}
\elib{https://elibrary.ru/item.asp?id=36962801}
\transl
\jour Comput. Math. Math. Phys.
\yr 2019
\vol 59
\issue 2
\pages 175--192
\crossref{https://doi.org/10.1134/S0965542519020052}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000468087400001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85066054411}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10827
  • https://www.mathnet.ru/eng/zvmmf/v59/i2/p185
  • This publication is cited in the following 20 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:178
    References:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024