Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2019, Volume 59, Number 1, Pages 50–62
DOI: https://doi.org/10.1134/S0044466919010150
(Mi zvmmf10816)
 

This article is cited in 15 scientific papers (total in 15 papers)

Analytical-numerical approach to describing time-periodic motion of fronts in singularly perturbed reaction–advection–diffusion models

V.T. Volkov, D. V. Lukyanenko, N. N. Nefedov

Faculty of Physics, Lomonosov Moscow State University, Moscow, 119991 Russia
Citations (15)
References:
Abstract: The paper presents an analytical-numerical approach to the study of moving fronts in singularly perturbed reaction–diffusion–advection models. A method for generating a dynamically adapted grid for the efficient numerical solution of problems of this class is proposed. The method is based on a priori information about the motion and properties of the front, obtained by rigorous asymptotic analysis of a singularly perturbed parabolic problem. In particular, the essential parameters taken into account when constructing the grid are estimates of the position of the transition layer, as well as its width and structure. The proposed analytical-numerical approach can significantly save computer resources, reduce the computation time, and increase the stability of the computational process in comparison with the classical approaches. An example demonstrating the main ideas and methods of application of the proposed approach is considered.
Key words: reaction–diffusion–advection models, singular perturbations, moving fronts, analytical-numerical method.
Funding agency Grant number
Russian Science Foundation 18-11-00042
This work was supported by the Russian Science Foundation, project no. 18-11-00042.
Received: 24.08.2018
English version:
Computational Mathematics and Mathematical Physics, 2019, Volume 59, Issue 1, Pages 46–58
DOI: https://doi.org/10.1134/S0965542519010159
Bibliographic databases:
Document Type: Article
UDC: 519.633
Language: Russian
Citation: V.T. Volkov, D. V. Lukyanenko, N. N. Nefedov, “Analytical-numerical approach to describing time-periodic motion of fronts in singularly perturbed reaction–advection–diffusion models”, Zh. Vychisl. Mat. Mat. Fiz., 59:1 (2019), 50–62; Comput. Math. Math. Phys., 59:1 (2019), 46–58
Citation in format AMSBIB
\Bibitem{VolLukNef19}
\by V.T.~Volkov, D.~V.~Lukyanenko, N.~N.~Nefedov
\paper Analytical-numerical approach to describing time-periodic motion of fronts in singularly perturbed reaction–advection–diffusion models
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2019
\vol 59
\issue 1
\pages 50--62
\mathnet{http://mi.mathnet.ru/zvmmf10816}
\crossref{https://doi.org/10.1134/S0044466919010150}
\elib{https://elibrary.ru/item.asp?id=36954031}
\transl
\jour Comput. Math. Math. Phys.
\yr 2019
\vol 59
\issue 1
\pages 46--58
\crossref{https://doi.org/10.1134/S0965542519010159}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000468086500004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85065715224}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10816
  • https://www.mathnet.ru/eng/zvmmf/v59/i1/p50
  • This publication is cited in the following 15 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Æóðíàë âû÷èñëèòåëüíîé ìàòåìàòèêè è ìàòåìàòè÷åñêîé ôèçèêè Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:224
    References:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024