Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2018, Volume 58, Number 8, Pages 148–156
DOI: https://doi.org/10.31857/S004446690002009-0
(Mi zvmmf10770)
 

This article is cited in 29 scientific papers (total in 29 papers)

On the accuracy of the discontinuous Galerkin method in calculation of shock waves

M. E. Ladonkinaa, O. A. Neklyudovab, V. V. Ostapenkoc, V. F. Tishkinc

a Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Moscow, Russia
b Lavrentyev Institute of Hydrodynamics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
c Novosibirsk State University, Novosibirsk, Russia
Citations (29)
References:
Abstract: The accuracy of the discontinuous Galerkin method of the third-order approximation on smooth solutions in the calculation of discontinuous solutions of a quasilinear hyperbolic system of conservation laws with shock waves propagating with a variable velocity is studied. As an example, the approximation of the system of conservation laws of shallow water theory is considered. On the example of this system, it is shown that, like the TVD and WENO schemes of increased order of approximation on smooth solutions, the discontinuous Galerkin method, despite its high accuracy on smooth solutions and in the localization of shock waves, reduces its order of convergence to the first order in the shock wave influence domain.
Key words: hyperbolic system of conservation laws, discontinuous Galerkin method, shallow water theory, integral and local convergence order.
Funding agency Grant number
Russian Science Foundation 16-11-10033
Received: 05.03.2018
English version:
Computational Mathematics and Mathematical Physics, 2018, Volume 58, Issue 8, Pages 1344–1353
DOI: https://doi.org/10.1134/S0965542518080122
Bibliographic databases:
Document Type: Article
UDC: 519.633
Language: Russian
Citation: M. E. Ladonkina, O. A. Neklyudova, V. V. Ostapenko, V. F. Tishkin, “On the accuracy of the discontinuous Galerkin method in calculation of shock waves”, Zh. Vychisl. Mat. Mat. Fiz., 58:8 (2018), 148–156; Comput. Math. Math. Phys., 58:8 (2018), 1344–1353
Citation in format AMSBIB
\Bibitem{LadNekOst18}
\by M.~E.~Ladonkina, O.~A.~Neklyudova, V.~V.~Ostapenko, V.~F.~Tishkin
\paper On the accuracy of the discontinuous Galerkin method in calculation of shock waves
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2018
\vol 58
\issue 8
\pages 148--156
\mathnet{http://mi.mathnet.ru/zvmmf10770}
\crossref{https://doi.org/10.31857/S004446690002009-0}
\elib{https://elibrary.ru/item.asp?id=36283438}
\transl
\jour Comput. Math. Math. Phys.
\yr 2018
\vol 58
\issue 8
\pages 1344--1353
\crossref{https://doi.org/10.1134/S0965542518080122}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000447951800014}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85053924455}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10770
  • https://www.mathnet.ru/eng/zvmmf/v58/i8/p148
  • This publication is cited in the following 29 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:339
    References:43
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024