Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2018, Volume 58, Number 8, Pages 62–72
DOI: https://doi.org/10.31857/S004446690002001-2
(Mi zvmmf10762)
 

This article is cited in 5 scientific papers (total in 5 papers)

Grid-characteristic method on tetrahedral unstructured meshes with large topological inhomogeneities

A. V. Vasyukov, I. B. Petrov

Moscow Institute of Physics and Technology (State University), Dolgoprudnyi, Russia
Citations (5)
References:
Abstract: A key difficulty faced when grid-characteristic methods on tetrahedral meshes are used to compute structures of complex geometry is the high computational cost of the problem. Formally, grid-characteristic methods can be used on any tetrahedral mesh. However, a direct generalization of these methods to tetrahedral meshes leads to a time step constraint similar to the Courant step for uniform rectangular grids. For computational domains of complex geometry, meshes nearly always contain very small or very flat tetrahedra. From a practical point of view, this leads to unreasonably small time steps (1-3 orders of magnitude smaller than actual structures) and, accordingly, to unreasonable growth of the amount of computations. In their classical works, A.S. Kholodov and K.M. Magomedov proposed a technique for designing grid-characteristic methods on unstructured meshes with the use of skewed stencils. Below, this technique is used to construct a numerical method that performs efficiently on tetrahedral meshes.
Key words: grid-characteristic method, tetrahedral mesh, skewed stencil.
Funding agency Grant number
Russian Foundation for Basic Research 17-07-00972_а
Received: 05.03.2018
English version:
Computational Mathematics and Mathematical Physics, 2018, Volume 58, Issue 8, Pages 1259–1269
DOI: https://doi.org/10.1134/S0965542518080183
Bibliographic databases:
Document Type: Article
UDC: 519.635
Language: Russian
Citation: A. V. Vasyukov, I. B. Petrov, “Grid-characteristic method on tetrahedral unstructured meshes with large topological inhomogeneities”, Zh. Vychisl. Mat. Mat. Fiz., 58:8 (2018), 62–72; Comput. Math. Math. Phys., 58:8 (2018), 1259–1269
Citation in format AMSBIB
\Bibitem{VasPet18}
\by A.~V.~Vasyukov, I.~B.~Petrov
\paper Grid-characteristic method on tetrahedral unstructured meshes with large topological inhomogeneities
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2018
\vol 58
\issue 8
\pages 62--72
\mathnet{http://mi.mathnet.ru/zvmmf10762}
\crossref{https://doi.org/10.31857/S004446690002001-2}
\elib{https://elibrary.ru/item.asp?id=36283425}
\transl
\jour Comput. Math. Math. Phys.
\yr 2018
\vol 58
\issue 8
\pages 1259--1269
\crossref{https://doi.org/10.1134/S0965542518080183}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000447951800006}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10762
  • https://www.mathnet.ru/eng/zvmmf/v58/i8/p62
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:269
    References:39
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024