Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2018, Volume 58, Number 7, Pages 1235–1245
DOI: https://doi.org/10.31857/S004446690000344-9
(Mi zvmmf10757)
 

This article is cited in 2 scientific papers (total in 2 papers)

On the number of roots of Boolean polynomials

V. K. Leont'eva, E. N. Gordeevb

a Dorodnicyn Computing Center, Federal Research Center “Computer Science and Control”, Russian Academy of Sciences, Moscow, Russia
b Bauman State Technical University, Moscow, Russia
Citations (2)
References:
Abstract: This paper continues the series of studies of Boolean polynomials (Zhegalkin polynomials or algebraic normal forms (ANFs)). The investigation of properties of Boolean polynomials is an important topic of discrete mathematics and combinatorial analysis. Theoretical results in this field have wide practical applications. For example, a number of popular public-key cryptosystems are based on Reed–Muller codes, and the representation of these codes, as well as encryption and decryption algorithms are based on Boolean polynomials. The spectral properties of such codes are determined by the number of zeros of Boolean polynomials and are analyzed using the randomization lemma. Since the problem of determining the number of zeros $Z_g$ of the Boolean polynomial $g(x)$ is NP-hard, the algorithms taking into account the “combinatorial structure of the polynomial” (even though they are search algorithms) are of practical interest. In this paper, such an algorithm based on the properties of the monomial matrix is proposed. For various types of polynomials, exact formulas for the number of roots and the expectation of the number of roots are obtained. A subclass of Boolean polynomials consisting of polynomials with separating variables is considered. A result that can be considered as a generalization of the randomization lemma is proved. The theoretical results provide a basis for estimating the applicability of polynomials for solving various practical problems.
Key words: Boolean polynomial, roots of polynomial, NP-hard problems, randomization lemma..
English version:
Computational Mathematics and Mathematical Physics, 2018, Volume 58, Issue 7, Pages 1188–1197
DOI: https://doi.org/10.1134/S0965542518070102
Bibliographic databases:
Document Type: Article
UDC: 519.16
Language: Russian
Citation: V. K. Leont'ev, E. N. Gordeev, “On the number of roots of Boolean polynomials”, Zh. Vychisl. Mat. Mat. Fiz., 58:7 (2018), 1235–1245; Comput. Math. Math. Phys., 58:7 (2018), 1188–1197
Citation in format AMSBIB
\Bibitem{LeoGor18}
\by V.~K.~Leont'ev, E.~N.~Gordeev
\paper On the number of roots of Boolean polynomials
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2018
\vol 58
\issue 7
\pages 1235--1245
\mathnet{http://mi.mathnet.ru/zvmmf10757}
\crossref{https://doi.org/10.31857/S004446690000344-9}
\elib{https://elibrary.ru/item.asp?id=35723877}
\transl
\jour Comput. Math. Math. Phys.
\yr 2018
\vol 58
\issue 7
\pages 1188--1197
\crossref{https://doi.org/10.1134/S0965542518070102}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000442613300015}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85052228598}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10757
  • https://www.mathnet.ru/eng/zvmmf/v58/i7/p1235
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025