Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2018, Volume 58, Number 5, Pages 790–805
DOI: https://doi.org/10.7868/S0044466918050095
(Mi zvmmf10737)
 

This article is cited in 30 scientific papers (total in 30 papers)

Mathematical and numerical simulation of equilibrium of an elastic body reinforced by a thin elastic inclusion

N. A. Kazarinova, E. M. Rudoyab, V. Yu. Slesarenkoa, V. V. Shcherbakovab

a Lavrentyev Institute of Hydrodynamics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia
Citations (30)
References:
Abstract: A boundary value problem describing the equilibrium of a two-dimensional linear elastic body with a thin rectilinear elastic inclusion and possible delamination is considered. The stress and strain state of the inclusion is described using the equations of the Euler-Bernoulli beam theory. Delamination means the existence of a crack between the inclusion and the elastic matrix. Nonlinear boundary conditions preventing crack face interpenetration are imposed on the crack faces. As a result, problem with an unknown contact domain is obtained. The problem is solved numerically by applying an iterative algorithm based on the domain decomposition method and an Uzawa-type algorithm for solving variational inequalities. Numerical results illustrating the efficiency of the proposed algorithm are presented.
Key words: thin elastic inclusion, delamination crack, nonpenetration condition, variational inequality, domain decomposition method, Uzawa algorithm.
Funding agency Grant number
Russian Science Foundation 15-11-10000
Received: 31.03.2017
English version:
Computational Mathematics and Mathematical Physics, 2018, Volume 58, Issue 5, Pages 761–774
DOI: https://doi.org/10.1134/S0965542518050111
Bibliographic databases:
Document Type: Article
UDC: 519.635
Language: Russian
Citation: N. A. Kazarinov, E. M. Rudoy, V. Yu. Slesarenko, V. V. Shcherbakov, “Mathematical and numerical simulation of equilibrium of an elastic body reinforced by a thin elastic inclusion”, Zh. Vychisl. Mat. Mat. Fiz., 58:5 (2018), 790–805; Comput. Math. Math. Phys., 58:5 (2018), 761–774
Citation in format AMSBIB
\Bibitem{KazRudSle18}
\by N.~A.~Kazarinov, E.~M.~Rudoy, V.~Yu.~Slesarenko, V.~V.~Shcherbakov
\paper Mathematical and numerical simulation of equilibrium of an elastic body reinforced by a thin elastic inclusion
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2018
\vol 58
\issue 5
\pages 790--805
\mathnet{http://mi.mathnet.ru/zvmmf10737}
\crossref{https://doi.org/10.7868/S0044466918050095}
\elib{https://elibrary.ru/item.asp?id=34914374}
\transl
\jour Comput. Math. Math. Phys.
\yr 2018
\vol 58
\issue 5
\pages 761--774
\crossref{https://doi.org/10.1134/S0965542518050111}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000435404100010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85048611928}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10737
  • https://www.mathnet.ru/eng/zvmmf/v58/i5/p790
  • This publication is cited in the following 30 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:317
    References:46
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024