Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2018, Volume 58, Number 5, Pages 726–740
DOI: https://doi.org/10.7868/S0044466918050058
(Mi zvmmf10733)
 

This article is cited in 4 scientific papers (total in 4 papers)

Numerical analysis of spatial hydrodynamic stability of shear flows in ducts of constant cross section

A. V. Boikoab, K. V. Demyankocd, Yu. M. Nechepurenkocd

a Tyumen State University, Tyumen, Russia
b Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
c Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Moscow, Russia
d Institute of Numerical Mathematics, Russian Academy of Sciences, Moscow, Russia
Citations (4)
References:
Abstract: A technique for analyzing the spatial stability of viscous incompressible shear flows in ducts of constant cross section, i.e., a technique for the numerical analysis of the stability of such flows with respect to small time-harmonic disturbances propagating downstream is described and justified. According to this technique, the linearized equations for the disturbance amplitudes are approximated in space in the plane of the duct cross section and are reduced to a system of first-order ordinary differential equations in the streamwise variable in a way independent of the approximation method. This system is further reduced to a lower dimension one satisfied only by physically significant solutions of the original system. Most of the computations are based on standard matrix algorithms. This technique makes it possible to efficiently compute various characteristics of spatial stability, including finding optimal disturbances that play a crucial role in the subcritical laminar-turbulent transition scenario. The performance of the technique is illustrated as applied to the Poiseuille flow in a duct of square cross section.
Key words: duct flows, spatial stability, spectral reduction, optimal disturbances.
Received: 27.12.2016
English version:
Computational Mathematics and Mathematical Physics, 2018, Volume 58, Issue 5, Pages 700–713
DOI: https://doi.org/10.1134/S0965542518050056
Bibliographic databases:
Document Type: Article
UDC: 519.633
Language: Russian
Citation: A. V. Boiko, K. V. Demyanko, Yu. M. Nechepurenko, “Numerical analysis of spatial hydrodynamic stability of shear flows in ducts of constant cross section”, Zh. Vychisl. Mat. Mat. Fiz., 58:5 (2018), 726–740; Comput. Math. Math. Phys., 58:5 (2018), 700–713
Citation in format AMSBIB
\Bibitem{BoiDemNec18}
\by A.~V.~Boiko, K.~V.~Demyanko, Yu.~M.~Nechepurenko
\paper Numerical analysis of spatial hydrodynamic stability of shear flows in ducts of constant cross section
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2018
\vol 58
\issue 5
\pages 726--740
\mathnet{http://mi.mathnet.ru/zvmmf10733}
\crossref{https://doi.org/10.7868/S0044466918050058}
\elib{https://elibrary.ru/item.asp?id=34914367}
\transl
\jour Comput. Math. Math. Phys.
\yr 2018
\vol 58
\issue 5
\pages 700--713
\crossref{https://doi.org/10.1134/S0965542518050056}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000435404100006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85048641115}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10733
  • https://www.mathnet.ru/eng/zvmmf/v58/i5/p726
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024