Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2018, Volume 58, Number 4, Pages 618–625
DOI: https://doi.org/10.7868/S0044466918040129
(Mi zvmmf10724)
 

This article is cited in 8 scientific papers (total in 8 papers)

Solution of the cauchy problem for the three-dimensional telegraph equation and exact solutions of Maxwell’s equations in a homogeneous isotropic conductor with a given exterior current source

O. I. Akhmetov, V. S. Mingalev, I. V. Mingalev, O. V. Mingalev

Polar Geophysical Institute, Russian Academy of Sciences, Apatity, Russia
Citations (8)
References:
Abstract: For the solution of the Cauchy problem for the linear telegraph equation in three-dimensional space, we derive a formula similar to the Kirchhoff one for the linear wave equation (and turning into the latter at zero conductivity). Additionally, the problem of determining the field of a given exterior current source in an infinite homogeneous isotropic conductor is reduced to a generalized Cauchy problem for the three-dimensional telegraph equation. The derived formula enables us to reduce this problem to quadratures and, in some cases, to obtain exact three-dimensional solutions with a propagating front, which are of great applied importance for testing numerical methods for solving Maxwell’s equations. As an example, we construct the exact solution of the field from a Hertzian dipole with an arbitrary time dependence of the current in an infinite homogeneous isotropic conductor.
Key words: telegraph equation, Cauchy problem, Maxwell's equations, exact solutions.
Received: 16.05.2016
English version:
Computational Mathematics and Mathematical Physics, 2018, Volume 58, Issue 4, Pages 604–611
DOI: https://doi.org/10.1134/S0965542518040036
Bibliographic databases:
Document Type: Article
UDC: 519.635
Language: Russian
Citation: O. I. Akhmetov, V. S. Mingalev, I. V. Mingalev, O. V. Mingalev, “Solution of the cauchy problem for the three-dimensional telegraph equation and exact solutions of Maxwell’s equations in a homogeneous isotropic conductor with a given exterior current source”, Zh. Vychisl. Mat. Mat. Fiz., 58:4 (2018), 618–625; Comput. Math. Math. Phys., 58:4 (2018), 604–611
Citation in format AMSBIB
\Bibitem{AkhMinMin18}
\by O.~I.~Akhmetov, V.~S.~Mingalev, I.~V.~Mingalev, O.~V.~Mingalev
\paper Solution of the cauchy problem for the three-dimensional telegraph equation and exact solutions of Maxwell’s equations in a homogeneous isotropic conductor with a given exterior current source
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2018
\vol 58
\issue 4
\pages 618--625
\mathnet{http://mi.mathnet.ru/zvmmf10724}
\crossref{https://doi.org/10.7868/S0044466918040129}
\elib{https://elibrary.ru/item.asp?id=32825783}
\transl
\jour Comput. Math. Math. Phys.
\yr 2018
\vol 58
\issue 4
\pages 604--611
\crossref{https://doi.org/10.1134/S0965542518040036}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000432826100013}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85047240085}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10724
  • https://www.mathnet.ru/eng/zvmmf/v58/i4/p618
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:250
    References:53
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024