Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2018, Volume 58, Number 4, Pages 520–529
DOI: https://doi.org/10.7868/S0044466918040038
(Mi zvmmf10715)
 

This article is cited in 36 scientific papers (total in 36 papers)

Numerical solution of systems of loaded ordinary differential equations with multipoint conditions

A. T. Assanovaa, A. E. Imanchiyevb, Zh. M. Kadirbaevaa

a Institute of Mathematics and Mathematical Modeling, Ministry of Education and Science of the Republic of Kazakhstan, Almaty, Kazakhstan
b Aktobe Regional State University, Aktobe, Kazakhstan
Citations (36)
References:
Abstract: A system of loaded ordinary differential equations with multipoint conditions is considered. The problem under study is reduced to an equivalent boundary value problem for a system of ordinary differential equations with parameters. A system of linear algebraic equations for the parameters is constructed using the matrices of the loaded terms and the multipoint condition. The conditions for the unique solvability and well-posedness of the original problem are established in terms of the matrix made up of the coefficients of the system of linear algebraic equations. The coefficients and the righthand side of the constructed system are determined by solving Cauchy problems for linear ordinary differential equations. The solutions of the system are found in terms of the values of the desired function at the initial points of subintervals. The parametrization method is numerically implemented using the fourth-order accurate Runge–Kutta method as applied to the Cauchy problems for ordinary differential equations. The performance of the constructed numerical algorithms is illustrated by examples.
Key words: system of loaded differential equations, multipoint condition, algorithm for finding approximate solutions.
Received: 28.03.2017
Revised: 29.05.2017
English version:
Computational Mathematics and Mathematical Physics, 2018, Volume 58, Issue 4, Pages 508–516
DOI: https://doi.org/10.1134/S096554251804005X
Bibliographic databases:
Document Type: Article
UDC: 519.62
Language: Russian
Citation: A. T. Assanova, A. E. Imanchiyev, Zh. M. Kadirbaeva, “Numerical solution of systems of loaded ordinary differential equations with multipoint conditions”, Zh. Vychisl. Mat. Mat. Fiz., 58:4 (2018), 520–529; Comput. Math. Math. Phys., 58:4 (2018), 508–516
Citation in format AMSBIB
\Bibitem{AssImaKad18}
\by A.~T.~Assanova, A.~E.~Imanchiyev, Zh.~M.~Kadirbaeva
\paper Numerical solution of systems of loaded ordinary differential equations with multipoint conditions
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2018
\vol 58
\issue 4
\pages 520--529
\mathnet{http://mi.mathnet.ru/zvmmf10715}
\crossref{https://doi.org/10.7868/S0044466918040038}
\elib{https://elibrary.ru/item.asp?id=32825774}
\transl
\jour Comput. Math. Math. Phys.
\yr 2018
\vol 58
\issue 4
\pages 508--516
\crossref{https://doi.org/10.1134/S096554251804005X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000432826100004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85047249399}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10715
  • https://www.mathnet.ru/eng/zvmmf/v58/i4/p520
  • This publication is cited in the following 36 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024