Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2018, Volume 58, Number 6, Pages 1022–1039
DOI: https://doi.org/10.7868/S0044466918060133
(Mi zvmmf10711)
 

This article is cited in 12 scientific papers (total in 12 papers)

Analytical-numerical method for solving an Orr–Sommerfeld-type problem for analysis of instability of ocean currents

S. L. Skorokhodova, N. P. Kuzminab

a ВЦ ФИЦИУРАН
b 117997 Москва, Нахимовский пр-т, 36, Институт океанологии им. П.П. Ширшова Российской академии наук
Citations (12)
References:
Abstract: Stable and unstable disturbances of ocean currents are studied by analyzing a spectral problem based on the evolution potential vorticity equation in the quasi-geostrophic approximation. The problem is reduced to a fourth-order nonself-adjoint differential equation with a small parameter multiplying the highest derivative and with several dimensionless physical parameters. A feature of the problem is that the spectral parameter is involved in both the equation and boundary conditions for the third derivative. The problem is considered in two versions, namely, with a boundary condition setting the function or its second derivative to zero. An efficient analytical-numerical method is constructed for solving the problem. According to this method, even and odd functions are computed using power series expansions of the solution at boundary and middle points of the layer. An equation for the desired spectrum of the problem is derived by matching the expansions at an interior point. The asymptotic expansions of solutions and eigenvalues for small values of the wave number $k\to 0$ are studied. It is found that the problem for even and odd solutions with the boundary condition for the second derivative has a single finite eigenvalue and a countable set of indefinitely increasing eigenvalues as $k\to 0$. The problem with the boundary condition for the function has only a countable set of indefinitely increasing eigenvalues as $k\to 0$. The eigenvalues are computed for various parameters of the problem. The numerical results show that a current can be unstable in a wide range of $k$.
Key words: spectral problem, power series expansions, Wronskian of a system, Newton's method, asymptotic expansions.
Received: 07.09.2017
English version:
Computational Mathematics and Mathematical Physics, 2018, Volume 58, Issue 6, Pages 976–992
DOI: https://doi.org/10.1134/S0965542518060143
Bibliographic databases:
Document Type: Article
UDC: 517.62
Language: Russian
Citation: S. L. Skorokhodov, N. P. Kuzmina, “Analytical-numerical method for solving an Orr–Sommerfeld-type problem for analysis of instability of ocean currents”, Zh. Vychisl. Mat. Mat. Fiz., 58:6 (2018), 1022–1039; Comput. Math. Math. Phys., 58:6 (2018), 976–992
Citation in format AMSBIB
\Bibitem{SkoKuz18}
\by S.~L.~Skorokhodov, N.~P.~Kuzmina
\paper Analytical-numerical method for solving an Orr--Sommerfeld-type problem for analysis of instability of ocean currents
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2018
\vol 58
\issue 6
\pages 1022--1039
\mathnet{http://mi.mathnet.ru/zvmmf10711}
\crossref{https://doi.org/10.7868/S0044466918060133}
\elib{https://elibrary.ru/item.asp?id=35096886}
\transl
\jour Comput. Math. Math. Phys.
\yr 2018
\vol 58
\issue 6
\pages 976--992
\crossref{https://doi.org/10.1134/S0965542518060143}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000438129700013}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85049676039}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10711
  • https://www.mathnet.ru/eng/zvmmf/v58/i6/p1022
  • This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:298
    References:52
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024